- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Suppose that we are given $h_1=0.1 \to \delta_1=0.01$ and $h_2=0.05 \to \delta_2=0.025$ and we want to find the order of accuracy of the method.
I have tried the following:
$\delta_1^n= c h_1^{p+1}, \delta_2^n=c h_2^{p+1} \Rightarrow p+1= \frac{\log \left( \frac{\delta_1^n}{\delta_2^n}\right)}{\log \left( \frac{h_1}{h_2} \right)}= \frac{\log 2- \log 5}{\log 2} \Rightarrow p= \frac{- \log 2}{\log 5}$.
But the result should be 1. Where is my mistake? (Worried)
Suppose that we are given $h_1=0.1 \to \delta_1=0.01$ and $h_2=0.05 \to \delta_2=0.025$ and we want to find the order of accuracy of the method.
I have tried the following:
$\delta_1^n= c h_1^{p+1}, \delta_2^n=c h_2^{p+1} \Rightarrow p+1= \frac{\log \left( \frac{\delta_1^n}{\delta_2^n}\right)}{\log \left( \frac{h_1}{h_2} \right)}= \frac{\log 2- \log 5}{\log 2} \Rightarrow p= \frac{- \log 2}{\log 5}$.
But the result should be 1. Where is my mistake? (Worried)