- #1
- 2,076
- 140
Homework Statement
Find an invertible matrix ##P## and a matrix ##C## of the form ##\left( \begin{array}{cc} a & -b \\ b & a \end{array} \right)## such that ##A=PCP^{-1}## when ##A = \left( \begin{array}{cc} 1 & -2 \\ 1 & 3 \end{array} \right)##.
Homework Equations
Eigenvalues for A:
##\lambda_1 = 2+i##
##\lambda_2 = 2-i##
Eigenvectors for eigenvalues:
##v_1 = [-1 + i, 1]^t##
##Re(v_1) = [-1, 1]^t##
##Im(v_1) = [1, 0]^t##
##v_2 = [-1 - i, 1]^t##
##Re(v_2) = [-1, 1]^t##
##Im(v_2) = [-1, 0]^t##
A theorem:
Let ##A## be a real 2x2 matrix with a complex eigenvalue ##\lambda = a - bi, (b≠0)## and an associated eigenvector ##v##.
Then ##A=PCP^{-1}## where ##P = [ Re(v), Im(v) ]## and ##C = \left( \begin{array}{cc} a & -b \\ b & a \end{array} \right)##
The Attempt at a Solution
I've basically solved this, but I had a question.
Does the theorem state that I only care about the eigenvalue ##a - bi##? In this case it would be ##\lambda_2 = 2-i##. If that's the case, ##\lambda_1## is useless in finding the required matrices.
Granted that ##\lambda_1## and ##v_1## have nothing to do with the problem, the matrices required are:
##C = \left( \begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array} \right)##
##P = \left( \begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array} \right)##
##P^{-1} = \left( \begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right)##
Where I have plugged the magnitudes of ##a## and ##b## into ##C##.
My real curiosity lies in why I only care about the eigenvalue ##a - bi##?