- #1
Roary
- 9
- 0
The base of a solid is a circle of radius a, and its vertical cross sections are equilateral triangles. Find the radius of the circle if the volume of the solid is 10 cubic meters.
Eq. Triangle: A = [sqrt(3)/4]s^2
V = [sqrt(3)/4]*Integral{-a to a} 4(a^2 - x^2) dx
V = 2* [sqrt(3)*Integral{0 to a} (a^2 - x^2) ]dx
What next?
(Do I use x^2+y^2=a^2 somewhere?)
Eq. Triangle: A = [sqrt(3)/4]s^2
V = [sqrt(3)/4]*Integral{-a to a} 4(a^2 - x^2) dx
V = 2* [sqrt(3)*Integral{0 to a} (a^2 - x^2) ]dx
What next?
(Do I use x^2+y^2=a^2 somewhere?)