- #1
karush
Gold Member
MHB
- 3,269
- 5
A conical tank (with the vertex down)
is $10 \text{ ft}$ across the top and $12 \text{ ft}$ deep.
If water is flowing into the tank at rate of $\displaystyle\frac{10 \text{ ft}^3}{\text{min}}$
Find the rate of change of the depth of the water when the water is $8 \text{ ft}$ deep.
$\displaystyle V=\frac{1}{3} \pi r^2 h$
$\displaystyle r=\frac{5}{12} h$
$\displaystyle\frac{dV}{dt}=\frac{10 \text{ ft}^3}{\text{min}}$
$
\displaystyle V=\frac{1}{3}\pi\left(\frac{5}{12} h\right)^2 h =\frac{25}{432} \pi h^3
$
$\displaystyle\frac{d}{dt}V=\frac{d}{dt}\frac{25}{432} \pi h^3$
want to see if this set up right so far before continue? h=depth
is $10 \text{ ft}$ across the top and $12 \text{ ft}$ deep.
If water is flowing into the tank at rate of $\displaystyle\frac{10 \text{ ft}^3}{\text{min}}$
Find the rate of change of the depth of the water when the water is $8 \text{ ft}$ deep.
$\displaystyle V=\frac{1}{3} \pi r^2 h$
$\displaystyle r=\frac{5}{12} h$
$\displaystyle\frac{dV}{dt}=\frac{10 \text{ ft}^3}{\text{min}}$
$
\displaystyle V=\frac{1}{3}\pi\left(\frac{5}{12} h\right)^2 h =\frac{25}{432} \pi h^3
$
$\displaystyle\frac{d}{dt}V=\frac{d}{dt}\frac{25}{432} \pi h^3$
want to see if this set up right so far before continue? h=depth