MHB Find Real Roots of $\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Roots
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the real roots of the equation

$\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1 $
 
Mathematics news on Phys.org
My solution:

Let $u=\sqrt{x-1}$ and the equation becomes:

$$|u-2|+|u-3|=1$$

For which we find:

$$2\le u\le3$$

or:

$$5\le x\le10$$
 
Hello, kaliprasad!

Find the real roots: $\:\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\:=\:1$
We note that:
$\quad \begin{array}{ccccc}x + 3 - 4\sqrt{x-1} &=& (x-1) - 4\sqrt{x-1} + 4 &=& (\sqrt{x-1}-2)^2 \\ x+8 - 6\sqrt{x-1} &=& (x-1) - 6\sqrt{x-1} + 9 &=& (\sqrt{x-1} - 3)^2 \end{array}$

The equaton becomes: $\:\sqrt{(\sqrt{x-1}-2)^2} + \sqrt{(\sqrt{x-1}- 3)^2} \;=\;1$

$\quad \sqrt{x-1} - 2 + \sqrt{x-1}-3 \;=\;1 \quad\Rightarrow\quad 2\sqrt{x-1} \:=\:6 $

$\quad\sqrt{x-1} \:=\:3 \quad\Rightarrow\quad x-1 \:=\:9 \quad\Rightarrow\quad x \:=\:10$
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top