MHB Find $\sqrt{ABBCDC}:$ A,B,C,D Distinct, $CDC-ABB=25$

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The problem involves finding the square root of a 6-digit number represented as $\overline{ABBCDC}$, where $ABB$ and $CDC$ are distinct 3-digit numbers satisfying the equation $CDC - ABB = 25$. Additionally, the digits A, B, C, and D must all be distinct. The discussion explores the implications of removing the restriction on the difference between $CDC$ and $ABB$ and questions how many solutions would exist without that condition. Ultimately, the goal is to determine $\sqrt{ABBCDC}$ under the given constraints.
Albert1
Messages
1,221
Reaction score
0
$\overline{ABB},$ and $\overline{CDC}$
are two 3-digit numbers ,
giving :
(1)$CDC-ABB=25$
(2)$\overline{ABBCDC}$ (6-digit number) is a perfect square
please find :$\sqrt{ABBCDC}$
(here A,B,C,D are distinct)
 
Last edited:
Mathematics news on Phys.org
Hello, Albert!

$ABB,$ and $CDC$ are two 3-digit numbers, such that:

(1) $CDC-ABB\,=\,25$

(2) $\overline{ABBCDC}$ (6-digit number) is a perfect square.

Find: $\sqrt{ABBCDC}$
(where A,B,C,D are distinct digits)
From (1), we have the alphametic: $\;\begin{array}{cccc} & C&D&C \\ -&A&B&B \\ \hline &&2&5\end{array}$

There are only 3 solutions.

$[1]\;\begin{array}{cccc} & 2&0&2 \\ - &1&7&7 \\ \hline &&2&5\end{array}$

$\qquad$But $ABBCDC \,=\,117,\!202$ is not a square.$[2]\;\begin{array}{cccc}&3&1&3 \\ -&2&8&8 \\ \hline && 2&5 \end{array}$

$\qquad$But $ABBCDC \,=\,288,\!313$ is not a square.$[3]\;\begin{array}{cccc}&4&2&4 \\ - & 3&9&9 \\ \hline && 2&5 \end{array}$

$\qquad$And $\sqrt{ABBCDC} \:=\:\sqrt{399,\!424} \;=\;632$
 
soroban said:
Hello, Albert!
From (1), we have the alphametic: $\;\begin{array}{cccc} & C&D&C \\ -&A&B&B \\ \hline &&2&5\end{array}$There are only 3 solutions.$[1]\;\begin{array}{cccc} & 2&0&2 \\ - &1&7&7 \\ \hline &&2&5\end{array}$$\qquad$But $ABBCDC \,=\,117,\!202$ is not a square.$[2]\;\begin{array}{cccc}&3&1&3 \\ -&2&8&8 \\ \hline && 2&5 \end{array}$$\qquad$But $ABBCDC \,=\,288,\!313$ is not a square.$[3]\;\begin{array}{cccc}&4&2&4 \\ - & 3&9&9 \\ \hline && 2&5 \end{array}$$\qquad$And $\sqrt{ABBCDC} \:=\:\sqrt{399,\!424} \;=\;632$
perfect !
 
Albert said:
$\overline{ABB},$ and $\overline{CDC}$
are two 3-digit numbers ,
giving :
(1)$CDC-ABB=25$
(2)$\overline{ABBCDC}$ (6-digit number) is a perfect square
please find :$\sqrt{ABBCDC}$
(here A,B,C,D are distinct)
If restriction (1)CDC-ABB=25 is taken away
how many soluions we can find ?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top