Find tan 15° and cos 72° (using geometry)

In summary: If you know $\sin18^\circ$ or $\cos36^\circ$ you can get a simpler expression. In summary, using geometry, the values of $ \tan \,\, 15^o$ and $cos\,\,72^o$ are $2-\sqrt3$ and $\frac14(\sqrt5-1)$, respectively.
  • #1
Albert1
1,221
0
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
 
Mathematics news on Phys.org
  • #2
Albert said:
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)

$\displaystyle \begin{align*} \tan{ \left( 2\,\theta \right) } &\equiv \frac{ 2 \tan{ \left( \theta \right) } }{1 - \tan^2{ \left( \theta \right) } } \\ \tan{ \left( 30^{\circ} \right) } &= \frac{ 2\tan{ \left( 15^{\circ} \right) } }{ 1 - \tan^2{ \left( 15^{\circ} \right) } } \\ \frac{1}{\sqrt{3}} &= \frac{2\tan{ \left( 15^{\circ} \right) }}{1 - \tan^2{ \left( 15^{\circ} \right) } } \\ 1 - \tan^2{ \left( 15^{\circ} \right) } &= 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } \\ 0 &= \tan^2{ \left( 15^{\circ} \right) } + 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } - 1 \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ \left( 2\,\sqrt{3} \right) ^2 - 4 \left( 1 \right) \left( -1 \right) } }{2\left( 1 \right) } \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ 16 }}{2} \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm 4}{2} \\ \tan{ \left( 15^{\circ} \right) } &= -\sqrt{3} \pm 2 \end{align*}$

and as $\displaystyle \begin{align*} 15^{\circ} \end{align*}$ is in the first quadrant, the amount needs to be positive, thus it must be that $\displaystyle \begin{align*} \tan{ \left( 15^{\circ} \right) } = 2 - \sqrt{3} \end{align*}$.
 
  • #3
Prove It said:
$\displaystyle \begin{align*} \tan{ \left( 2\,\theta \right) } &\equiv \frac{ 2 \tan{ \left( \theta \right) } }{1 - \tan^2{ \left( \theta \right) } } \\ \tan{ \left( 30^{\circ} \right) } &= \frac{ 2\tan{ \left( 15^{\circ} \right) } }{ 1 - \tan^2{ \left( 15^{\circ} \right) } } \\ \frac{1}{\sqrt{3}} &= \frac{2\tan{ \left( 15^{\circ} \right) }}{1 - \tan^2{ \left( 15^{\circ} \right) } } \\ 1 - \tan^2{ \left( 15^{\circ} \right) } &= 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } \\ 0 &= \tan^2{ \left( 15^{\circ} \right) } + 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } - 1 \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ \left( 2\,\sqrt{3} \right) ^2 - 4 \left( 1 \right) \left( -1 \right) } }{2\left( 1 \right) } \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ 16 }}{2} \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm 4}{2} \\ \tan{ \left( 15^{\circ} \right) } &= -\sqrt{3} \pm 2 \end{align*}$

and as $\displaystyle \begin{align*} 15^{\circ} \end{align*}$ is in the first quadrant, the amount needs to be positive, thus it must be that $\displaystyle \begin{align*} \tan{ \left( 15^{\circ} \right) } = 2 - \sqrt{3} \end{align*}$.
the answer is correct ,can you prove it using "geometry" ?
 
  • #4
Albert said:
the answer is correct ,can you prove it using "geometry" ?

Trigonometry IS geometry!
 
  • #5
Albert said:
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)

kindly excuse me as I cannot draw a figure as I am not familiar but my solution is as below(for tan 15) ( I even not using tan 30)

Draw an equilateral triangle ABC side 2 and draw AD perpendiculaor to BC

AB = 2 , BD = 1 and $AD=sqrt{3}$

Now extend BD to E such that BE = AB = 2

join AE
AEB isn isosceles so $\angle AE = 30^\circ$ and $DE = DB + BE = 3$

so $AE = \sqrt{12}$

Extend DE to F such that EF = AE and join AF. So $DF = 3+ \sqrt{12}$

AEF is isosceles

so $\angle AFD = 15^\circ$ and

hence $\tan \, 15^\circ = \frac{AD}{DF}= \frac{\sqrt{3}}{3+\sqrt{12}} =\frac{\sqrt{3}(\sqrt{12}-3)}{12-9}$ = $\frac{6-3\sqrt{3}}{3}=2-\sqrt{3}$
 
  • #6
[sp]
[TIKZ][scale=3]
\coordinate [label=above left: $A$] (A) at (0,2) ;
\coordinate [label=above right: $B$] (B) at (2,2) ;
\coordinate [label=below right: $C$] (C) at (2,0) ;
\coordinate [label=below left: $D$] (D) at (0,0) ;
\coordinate [label=right: $E$] (E) at (1,1.732) ;
\coordinate [label=above : $F$] (F) at (1,2) ;
\coordinate [label=below : $G$] (G) at (1,0) ;
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (E) ;
\draw (D) -- (E) -- (C) ;
\draw (F) -- (G) ;[/TIKZ]​
In the diagram, $ABCD$ is a square with side $2$, and $CDE$ is an equilateral triangle whose height $EG$ is $\sqrt3$.

In the isosceles triangle $ADE$ the angle at $D$ is $30^\circ$, so the angles at $A$ and $E$ are $75^\circ$. Therefore the angle $EAF$ is $15^\circ$. You can then see from the triangle $AFE$ that $\tan15^\circ = \dfrac{EF}{AF} = \dfrac{FG - EG}{1} = 2-\sqrt3.$[/sp]
Edit: kaliprasad just beat me to it with what looks like a very similar solution.
 
  • #7
As for evaluating $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } \end{align*}$, we need to look at a regular pentagram.

View attachment 6433

If we have the side lengths as 1 unit long, and if we call the unknown length "x" then in the middle triangle from the cosine rule we can write

$\displaystyle \begin{align*} x^2 &= x^2 + 1^2 - 2\left( x \right) \left( 1 \right) \cos{ \left( 72^{\circ} \right) } \\ 0 &= 1 - 2\,x\cos{ \left( 72^{\circ} \right) } \\ 2\,x \cos{ \left( 72^{\circ} \right) } &= 1 \\ x &= \frac{1}{2\cos{ \left( 72^{\circ} \right) } } \end{align*}$

If we look at the left hand triangle, we can relate the three sides by the cosine rule

$\displaystyle \begin{align*} x^2 &= 1^2 + 1^2 - 2\left( 1 \right) \left( 1 \right) \cos{ \left( 108 ^{\circ} \right) } \\ x^2 &= 2 - 2\cos{ \left( 108^{\circ} \right) } \\ x^2 &= 2 - 2\cos{ \left( 180^{\circ} - 72^{\circ} \right) } \\ x^2 &= 2 + 2\cos{ \left( 72^{\circ} \right) } \\ \left[ \frac{1}{2\cos{ \left( 72^{\circ} \right) } } \right] ^2 &= 2 + 2\cos{ \left( 72^{\circ} \right) } \\ \frac{1}{4\cos^2{\left( 72^{\circ} \right) } } &= 2 + 2\cos{ \left( 72^{\circ} \right) } \\ 1 &= 4\cos^2{ \left( 72^{\circ} \right) } \left[ 2 + 2\cos{ \left( 72^{\circ} \right) } \right] \\ 1 &= 8\cos^2{ \left( 72^{\circ} \right) } + 8\cos^3{ \left( 72^{\circ} \right) } \\ 0 &= 8\cos^3{ \left( 72^{\circ} \right) } + 8\cos^2{ \left( 72^{\circ} \right) } - 1 \end{align*}$

If we let $\displaystyle \begin{align*} y = \cos{ \left( 72^{\circ} \right) } \end{align*}$ then we have the polynomial equation $\displaystyle \begin{align*} 8\,y^3 + 8\,y^2 - 1 &= 0 \end{align*}$.

We can see that $\displaystyle \begin{align*} y = -\frac{1}{2} \end{align*}$ is a solution, and so $\displaystyle \begin{align*} \left( 2\,y + 1 \right) \end{align*}$ is a factor. Thus

$\displaystyle \begin{align*} 8\,y^3 + 8\,y^2 - 1 &= 0 \\ 8\,y^3 + 4\,y^2 + 4\,y^2 - 1 &= 0 \\ 8\,y^3 + 4\,y^2 + 4\,y^2 + 2\,y - 2\,y - 1 &= 0 \\ 4\,y^2 \left( 2\,y + 1 \right) + 2\,y \left( 2\,y + 1 \right) - 1 \left( 2\,y + 1 \right) &= 0 \\ \left( 2\,y + 1 \right) \left( 4\,y^2 + 2\,y - 1 \right) &= 0 \end{align*}$

It's pretty obvious that as $\displaystyle \begin{align*} 0 < 72 < 90 \end{align*}$ that $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } > 0 \end{align*}$, so $\displaystyle \begin{align*} -\frac{1}{2} \end{align*}$ can't be the solution, thus

$\displaystyle \begin{align*} 4\,y^2 + 2\,y - 1 &= 0 \\ y &= \frac{-2 \pm \sqrt{2^2 - 4\left( 4 \right) \left( -1 \right) }}{2\left( 4 \right) } \\ y &= \frac{-2 \pm \sqrt{ 20 }}{8} \\ y &= \frac{-2 \pm 2\,\sqrt{5}}{8} \\ y &= \frac{-1 \pm \sqrt{5}}{4} \end{align*}$

Again, as we know $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } > 0 \end{align*}$ that means that $\displaystyle \begin{align*} \frac{-1 - \sqrt{5}}{4} \end{align*}$ can't be the solution, and thus we can say for certain, as it's the only other possible solution to this polynomial equation, that $\displaystyle \begin{align*} \cos{ \left( 72^{\circ} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$.
 

Attachments

  • pentagram.png
    pentagram.png
    7 KB · Views: 74
Last edited:
  • #8
$\cos72^\circ$, "using geometry":
[sp]
[TIKZ]\coordinate [label=above: $A$] (A) at (90:3) ;
\coordinate [label=right: $B$] (B) at (18:3) ;
\coordinate [label=below right: $C$] (C) at (306:3) ;
\coordinate [label=below left: $D$] (D) at (234:3) ;
\coordinate [label=left: $E$] (E) at (162:3) ;
\coordinate [label=below: $G$] (G) at (0,-2.43) ;
\draw (A) -- (B) -- (C) -- (D) -- (E) -- cycle;
\draw (A) -- (C) -- (E) -- (B) -- (D) -- cycle ;
\draw (A) -- (G) ;
\node at (-1.5,-0.5) {$F$} ;
[/TIKZ]​
In the diagram, $ABCDE$ is a regular pentagon with side $2$. Let $d$ be the length of a diagonal such as $AD$.

The quadrilateral $ABCF$ is a rhombus, and so $AF = FC = AB = 2$. Thus the triangle $DFC$ is isosceles. It has the same angles ($36^\circ,72^\circ,72^\circ$) as the triangle $DAC$. Comparing lengths of sides in these two triangles, you see that $\dfrac{DF}{DC} = \dfrac{DC}{DA}$, so that $\dfrac{DF}{2} = \dfrac2d.$

Therefore $d = DA = DF + FA = \dfrac4d + 2$, from which $d^2 - 2d - 4 = 0$. The positive solution of that quadratic is $d = \sqrt5+1$. Hence $\cos72^\circ = \dfrac{DG}{DA} = \dfrac1{\sqrt5+1}$. You can tidy this up by rationalising the denominator, getting $\cos72^\circ = \frac14(\sqrt5-1)$.
[/sp]
 

FAQ: Find tan 15° and cos 72° (using geometry)

How do you find the value of tan 15° using geometry?

To find the value of tan 15° using geometry, we need to draw a right triangle with one angle measuring 15°. Then, we can use the definition of tangent as opposite over adjacent to find the value of tan 15°. In this case, tan 15° would be equal to the length of the side opposite the 15° angle divided by the length of the adjacent side.

Can you explain the process of finding cos 72° using geometry?

To find the value of cos 72° using geometry, we can use the definition of cosine as adjacent over hypotenuse in a right triangle. We will need to draw a right triangle with one angle measuring 72° and then use the lengths of the adjacent and hypotenuse sides to calculate the value of cos 72°.

Is there a specific formula for finding trigonometric values using geometry?

Yes, there are specific formulas for finding trigonometric values using geometry. For example, the tangent and cosine formulas mentioned in the previous questions are commonly used to find values of these trigonometric functions using geometry.

Can you use any type of triangle to find trigonometric values using geometry?

No, in most cases, you cannot use any type of triangle to find trigonometric values using geometry. The triangle must be a right triangle, meaning it has one angle measuring 90°, in order to use these trigonometric formulas.

Are there other methods besides geometry to find trigonometric values?

Yes, there are other methods besides geometry to find trigonometric values. These include using a calculator or using trigonometric tables to look up the values. However, understanding the principles of geometry can help in visualizing and understanding these values better.

Similar threads

Back
Top