- #1
Albert1
- 1,221
- 0
find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
Albert said:find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
Prove It said:$\displaystyle \begin{align*} \tan{ \left( 2\,\theta \right) } &\equiv \frac{ 2 \tan{ \left( \theta \right) } }{1 - \tan^2{ \left( \theta \right) } } \\ \tan{ \left( 30^{\circ} \right) } &= \frac{ 2\tan{ \left( 15^{\circ} \right) } }{ 1 - \tan^2{ \left( 15^{\circ} \right) } } \\ \frac{1}{\sqrt{3}} &= \frac{2\tan{ \left( 15^{\circ} \right) }}{1 - \tan^2{ \left( 15^{\circ} \right) } } \\ 1 - \tan^2{ \left( 15^{\circ} \right) } &= 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } \\ 0 &= \tan^2{ \left( 15^{\circ} \right) } + 2\,\sqrt{3}\,\tan{ \left( 15^{\circ} \right) } - 1 \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ \left( 2\,\sqrt{3} \right) ^2 - 4 \left( 1 \right) \left( -1 \right) } }{2\left( 1 \right) } \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm \sqrt{ 16 }}{2} \\ \tan{ \left( 15^{\circ} \right) } &= \frac{-2\,\sqrt{3} \pm 4}{2} \\ \tan{ \left( 15^{\circ} \right) } &= -\sqrt{3} \pm 2 \end{align*}$
and as $\displaystyle \begin{align*} 15^{\circ} \end{align*}$ is in the first quadrant, the amount needs to be positive, thus it must be that $\displaystyle \begin{align*} \tan{ \left( 15^{\circ} \right) } = 2 - \sqrt{3} \end{align*}$.
Albert said:the answer is correct ,can you prove it using "geometry" ?
Albert said:find :
(1)$ tan \,\, 15^o$
(2)$cos\,\,72^o$
(using geometry)
To find the value of tan 15° using geometry, we need to draw a right triangle with one angle measuring 15°. Then, we can use the definition of tangent as opposite over adjacent to find the value of tan 15°. In this case, tan 15° would be equal to the length of the side opposite the 15° angle divided by the length of the adjacent side.
To find the value of cos 72° using geometry, we can use the definition of cosine as adjacent over hypotenuse in a right triangle. We will need to draw a right triangle with one angle measuring 72° and then use the lengths of the adjacent and hypotenuse sides to calculate the value of cos 72°.
Yes, there are specific formulas for finding trigonometric values using geometry. For example, the tangent and cosine formulas mentioned in the previous questions are commonly used to find values of these trigonometric functions using geometry.
No, in most cases, you cannot use any type of triangle to find trigonometric values using geometry. The triangle must be a right triangle, meaning it has one angle measuring 90°, in order to use these trigonometric formulas.
Yes, there are other methods besides geometry to find trigonometric values. These include using a calculator or using trigonometric tables to look up the values. However, understanding the principles of geometry can help in visualizing and understanding these values better.