- #1
een
- 11
- 0
Homework Statement
Let a>0 be a constant. Find the average value of the function f(x,y)=x^2+y^2
1) on the square -a[tex]\leq[/tex]x[tex]\leq[/tex]a, -a[tex]\leq[/tex]y[tex]\leq[/tex]a
2) on the disk x^2+y^2[tex]\leq[/tex]a^2
Homework Equations
The Attempt at a Solution
1) I integrated [tex]\int[/tex]a-(-a) [tex]\int[/tex]a-(-a) (x^2+y^2) dxdy and got (8/3)a^4..Is this right?
2)I converted it to polar coordinates 0[tex]\leq[/tex][tex]\theta[/tex][tex]\leq[/tex]2pi
and 0[tex]\leq[/tex]r[tex]\leq[/tex]sqrt(a)
i integrated [tex]\int[/tex]0-2pi[tex]\int[/tex]0-sqrt(a) r^2drd[tex]\theta[/tex]
and got 2/3pi*(sqrt(a)^3)... is this right?----- 2pi[tex]\frac{\sqrt{a}^3}{3}[/tex]