- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- Kindly see attached below
- Relevant Equations
- parametric equations
My interest on this question is solely on ##10.iii## only... i shared the whole question so as to give some background information.
the solution to ##10.iii## here,
now my question is, what if one would approach the question like this,
##\frac {dy}{dx}=\frac{t^2+2}{t^2-2}##
we know that ##xt=t^2+2##
##yt=t^2-2##,
therefore, ##\frac {dy}{dx}=\frac{x}{y}##
it follows that, ##ydy=xdx## on integration, ##\frac {y^2}{2}+k=\frac {x^2}{2}##, or
##x^2-y^2=2k##, would this be correct? (...if a student was to answer using this approach in an exam i.e...)
I know that the ##k## value here is not assigned the required numeric value ##8##...
the solution to ##10.iii## here,
now my question is, what if one would approach the question like this,
##\frac {dy}{dx}=\frac{t^2+2}{t^2-2}##
we know that ##xt=t^2+2##
##yt=t^2-2##,
therefore, ##\frac {dy}{dx}=\frac{x}{y}##
it follows that, ##ydy=xdx## on integration, ##\frac {y^2}{2}+k=\frac {x^2}{2}##, or
##x^2-y^2=2k##, would this be correct? (...if a student was to answer using this approach in an exam i.e...)
I know that the ##k## value here is not assigned the required numeric value ##8##...
Last edited: