MHB Find the constants given the domain and range

AI Thread Summary
To find constants B and C for the function y = f(x) with a domain of 1 ≤ x ≤ 6 transformed to 8 ≤ x ≤ 9, B must be positive, allowing for algebraic manipulation to create two equations based on the endpoints. For the second part, to adjust the range of Af(x) + D from −3 ≤ y ≤ 5 to 0 ≤ y ≤ 1, constants A and D can be determined by setting up equations that align the new range with the original. The discussion emphasizes the need for algebraic relationships to solve for the constants effectively. Understanding the composition of functions is crucial for these transformations. The thread highlights the importance of correctly applying function transformations in pre-calculus.
bcast
Messages
1
Reaction score
0
Suppose you have a function y = f(x) such that the domain of f(x) is 1 ≤ x ≤ 6 and the range of f(x) is −3 ≤ y ≤ 5.

a) Find constants B and C so that the domain of f(B(x − C)) is 8 ≤ x ≤ 9
B=
C=

b) Find constants A and D so that the range of Af(x) + D is 0 ≤ y ≤ 1
A=
D=

I'm working on composition of functions and completely lost at this point.
 
Mathematics news on Phys.org
Hello and welcome to MHB, bcast!

I have moved your topic from the Analysis forum as this is a Pre-calculus topic.

For the first problem, I would begin with the function's new domain:

$$8\le x\le9$$

Now, assuming $B$ is positive, can you algebraically get $B(x-C)$ in the middle, and then equating the end-points to the originals, you will have two equations in two unknowns?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top