- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- See attached- My interest is on number 4.
- Relevant Equations
- ##\nabla f=0## and Lagrange multiplier.
The interest is on number ##4##,
In my working,
##f(x,y,z) = x+y^2+2z## and ##g(x,y,z) = 4x^2+9y^2-36z^2 = 36##
##f_x = 1, f_y=2y## and ##f_z = 2## and also ## g_x = 8λx, g_y = 18λy## and ##g_z = -72λz##
using ##\nabla f (x,y,z) = λ\nabla f (x,y,z)##
i shall have,
##1 = 8λx ##
##2y = 18λy##
##2 = -72λz##
then,
##λ =\dfrac{1}{8x} = \dfrac{1}{9}= \dfrac{-1}{36z}##
##\dfrac{1}{9}= \dfrac{-1}{36z}##
##z= \dfrac{-1}{4} ## and we also have, ##\dfrac{1}{8x} = \dfrac{1}{9} ⇒ x = \dfrac{9}{8}##
We have ##4x^2+9y^2-36z^2=36##
To find ##y##,
⇒##4⋅\left(\dfrac{9}{8}\right)^2 + 9y^2 - 36 ⋅\left(\dfrac{-1}{4}\right)^2=36##
##576y^2 = 2124##
##y^2 = \dfrac{59}{\sqrt{16}}##
##y = \dfrac{\sqrt{59}}{4}##
##(x,y,z) = \left(\dfrac{9}{8}, \dfrac{\sqrt{59}}{4},\dfrac{-1}{4} \right)##
also when ##y=0## from the equation, ##2y = 18λy##
we shall have with similar steps ##(x,y,z) = \left(\dfrac{-9}{\sqrt{5}}, 0, \dfrac{2}{\sqrt{5}}\right)##
any input or alternative welcome...
Bingo!
Last edited: