- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- See attached.
- Relevant Equations
- ##\nabla f=0##
My interest is on number 11.
In my approach;
##v= xyz##
##1000=xyz##
##z= \dfrac{1000}{xy}##
Surface area: ##f(x,y)= 2( xy+yz+xz)##
##f(x,y)= 2\left( xy+\dfrac{1000}{x} + \dfrac{1000}{y}\right)##
##f_{x} = 2y -\dfrac{2000}{x^2} = 0##
##f_{y} = 2x -\dfrac{2000}{y^2} = 0##
On solving the simultaneous, i have
##2xy^2 - 2x^2y=0, 2xy(y-x)=0##
##(x_1, y_1) = (0,0)## is a critical point but ##x,y ≠ 0## leaving us with
##y-x=0, ⇒ y=x## thus,
##2x^3 - 2000=0##
##x_{2}=10, ⇒ y_{2} =10## and therefore ##z=\dfrac{1000}{100} =10##
thus the dimensions are ##(x,y,z) = (10,10,10)##.
also,
##D (10,10)= \left[\dfrac{4000}{x^3} ⋅ \dfrac{4000}{y^3} - 2^2 \right]= 16-4=12>0## and ##f_{xx} (10,10) = 4>0## implying that ##f## has a local minimum at ##(10,10).##
For avoidance of doubt, ##D = f_{xx} ⋅f_{yy} - (f_{yy})^2##
Your wise counsel is welcome or any insight. Cheers guys.
In my approach;
##v= xyz##
##1000=xyz##
##z= \dfrac{1000}{xy}##
Surface area: ##f(x,y)= 2( xy+yz+xz)##
##f(x,y)= 2\left( xy+\dfrac{1000}{x} + \dfrac{1000}{y}\right)##
##f_{x} = 2y -\dfrac{2000}{x^2} = 0##
##f_{y} = 2x -\dfrac{2000}{y^2} = 0##
On solving the simultaneous, i have
##2xy^2 - 2x^2y=0, 2xy(y-x)=0##
##(x_1, y_1) = (0,0)## is a critical point but ##x,y ≠ 0## leaving us with
##y-x=0, ⇒ y=x## thus,
##2x^3 - 2000=0##
##x_{2}=10, ⇒ y_{2} =10## and therefore ##z=\dfrac{1000}{100} =10##
thus the dimensions are ##(x,y,z) = (10,10,10)##.
also,
##D (10,10)= \left[\dfrac{4000}{x^3} ⋅ \dfrac{4000}{y^3} - 2^2 \right]= 16-4=12>0## and ##f_{xx} (10,10) = 4>0## implying that ##f## has a local minimum at ##(10,10).##
For avoidance of doubt, ##D = f_{xx} ⋅f_{yy} - (f_{yy})^2##
Your wise counsel is welcome or any insight. Cheers guys.
Last edited: