- #1
chwala
Gold Member
- 2,746
- 387
- TL;DR Summary
- Kindly see attached;
Going through this now: pretty straightforward i just want to check that i have covered all aspects including any other approach...
Ok for 15. I have,
##\nabla f= (yz \cos (xyz), xz \cos (xyz), xy \cos (xyz) )##
so,
##D_v f(1,1,1) = \textbf v ⋅\nabla f(1,1,1)##=##\left(\dfrac {1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3} })\right)⋅( \cos 1, \cos 1 , \cos 1) = \dfrac{\cos 1}{\sqrt{3}} + \dfrac{\cos 1}{\sqrt{3}} + \dfrac{\cos 1}{\sqrt{3}} =\dfrac{3}{\sqrt{3}}\cos 1= \sqrt{3} \cos 1 ## Ok for 16. I have,
##\nabla f= (2x e^{yz} , x^2z e^{yz}, x^2y e^{yz} )##
so,
##D_v f(1,1,1) = \textbf v ⋅\nabla f(1,1,1)##=##\left(\dfrac {1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3} })\right)⋅( 2e, e, e) = \dfrac{2e}{\sqrt{3}} + \dfrac{e}{\sqrt{3}} + \dfrac{e}{\sqrt{3}} =\dfrac{4}{\sqrt{3}}e ##
Last edited: