MHB Find the distance between points C and D if the height of the tree is 4m

AI Thread Summary
To find the distance between points C and D, the height of the tree is given as 4m. From point C, the angle of elevation to the top of the tree is 30 degrees, resulting in a distance \(d_C\) of 4√3 meters. From point D, the angle of elevation is 45 degrees, giving a distance \(d_D\) of 4 meters. The distance between points C and D is calculated by subtracting \(d_D\) from \(d_C\), leading to the formula \(d = d_C - d_D\). The final calculation reveals the distance between the two points.
Elissa89
Messages
52
Reaction score
0
So the question is...From point C on the ground level, the angle of elevation to the top of a tree is 30 degrees. From point D, which is closer to the tree, the angle of elevation is measured to be 45 degrees. Find the distance between points C and D if the height of the tree is 4m.

I know triangle 1 has angles 30 degrees, 60 and 90. So the adjacent side is 4*sqrt(3)

I know triangle 2 has angles 45 degrees, 45 and 90. The adjacent side is 2*sqrt(2)

From here I am stuck as I do not know how to find the distance between point C and D
 
Mathematics news on Phys.org
I would let \(d_C\) be the distance from point C to the tree in meters, and so we may write:

$$\tan\left(30^{\circ}\right)=\frac{4}{d_C}\implies d_C=4\cot\left(30^{\circ}\right)=4\sqrt{3}\quad\checkmark$$

Likewise for point D:

$$\tan\left(45^{\circ}\right)=\frac{4}{d_D}\implies d_D=4\cot\left(45^{\circ}\right)=4$$

We should expect that in a 45-45-90 triangle the adjacent and opposite sides are equal. And so the distance \(d\) between the two points is:

$$d=d_C-d_D=?$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top