- #1
chwala
Gold Member
- 2,748
- 387
- Homework Statement
- This is my own question (set by myself). Refreshing on this area...
Find the divergence and curl of the given vector field;
##F = x \cos xi -e^y j+xyz k##
- Relevant Equations
- Vector calculus
Been long since i studied this area...time to go back.
##F = x \cos xi -e^y j+xyz k##
For divergence i have,
##∇⋅F = (\cos x -x\sin x)i -e^y j +xy k##
and for curl,
##∇× F = \left(\dfrac{∂}{∂y}(xyz)-\dfrac{∂}{∂z}(-e^y)\right) i -\left(\dfrac{∂}{∂x}(xyz)-\dfrac{∂}{∂z}(x \cos x)\right)j+\left(\dfrac{∂}{∂x}(-e^y)-\dfrac{∂}{∂y}(x\cos x)\right)k##
##∇× F = xz i -yzj##
cheers insight welcome.
##F = x \cos xi -e^y j+xyz k##
For divergence i have,
##∇⋅F = (\cos x -x\sin x)i -e^y j +xy k##
and for curl,
##∇× F = \left(\dfrac{∂}{∂y}(xyz)-\dfrac{∂}{∂z}(-e^y)\right) i -\left(\dfrac{∂}{∂x}(xyz)-\dfrac{∂}{∂z}(x \cos x)\right)j+\left(\dfrac{∂}{∂x}(-e^y)-\dfrac{∂}{∂y}(x\cos x)\right)k##
##∇× F = xz i -yzj##
cheers insight welcome.
Last edited: