- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- My interest is on highlighted in yellow. part b
- Relevant Equations
- see attached
My approach - i think similar to ms approach.
The required Equation will be in the form ##y=mx##
##\begin{pmatrix}
a & b^2 \\
c^2 & a
\end{pmatrix} ⋅
\begin{pmatrix}
k \\
mk
\end{pmatrix} =
\begin{pmatrix}
x \\
y
\end{pmatrix}
##
##ak+b^2mk=x##
##kc^2+amk=y##
##x=k(a+b^2m)##
##k=\dfrac{x}{a+b^2m}##
##y= k(c^2+am)##
##y=\dfrac{c^2+am}{a+b^2m}x##
##m=\dfrac{c^2+am}{a+b^2m}##
##am+b^2m^2=c^2+am##
##b^2m^2-c^2=0##
##m=\sqrt {\dfrac{c^2}{b^2}}##
##m_1 = \dfrac{c}{b}## and ##m_2 = -\dfrac {c}{b}##
##y=\dfrac{c}{b}x##
and
##y=-\dfrac{c}{b}x##
Ms approach,
Any insight welcome guys!
Last edited: