- #1
Nallyfish
- 6
- 0
Homework Statement
Find the Fourier cosine series representation of
g([itex]\chi[/itex]) = [itex]\chi[/itex] ([itex]\pi[/itex] + [itex]\chi[/itex])
on the interval (0,[itex]\pi[/itex])
The attempt at a solution
Okay so I've got
a0=[itex]\frac{1}{\pi}[/itex][itex]\int\chi(\pi+\chi)d\chi[/itex]
=[itex]\frac{5\pi^{3}}{6}[/itex]
an=[itex]\frac{1}{\pi}[/itex][itex]\int\chi(\pi+\chi)cos(n\chi)d\chi[/itex] for n[itex]\geq1[/itex]
But I'm not quite sure where to go from there
Find the Fourier cosine series representation of
g([itex]\chi[/itex]) = [itex]\chi[/itex] ([itex]\pi[/itex] + [itex]\chi[/itex])
on the interval (0,[itex]\pi[/itex])
The attempt at a solution
Okay so I've got
a0=[itex]\frac{1}{\pi}[/itex][itex]\int\chi(\pi+\chi)d\chi[/itex]
=[itex]\frac{5\pi^{3}}{6}[/itex]
an=[itex]\frac{1}{\pi}[/itex][itex]\int\chi(\pi+\chi)cos(n\chi)d\chi[/itex] for n[itex]\geq1[/itex]
But I'm not quite sure where to go from there