- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $v(x,y)$ be a harmonic function in $\mathbb{R}^2$. I want to compute $v(0,0)$ given that $v|_{x^2+y^2=1}=\sin{\phi}+1$, where $x= \cos{\phi}, y=\sin{\phi}, \phi \in [0,2 \pi)$.
I I thought that we could use the following theorem.
$(\star) \Delta u=0 \text{ in } B_R(0), u|_{\partial{B_R(0)}}=\phi $
($ B_R(0)$ is a sphere with radius $R$) Theorem: Let $ \phi \in C^0(\partial{B_R}(0))$ , then the function $ u(x)=\frac{R^2-|x|^2}{w_n R} \int_{\partial{B_R}} \frac{\phi(\xi)}{|x-\xi|^n} dS $ is the only (classical) solution of $(\star)$.
($ w_n $ is the area of the unit ball in $ \mathbb{R}^n $)
From the theorem we have that the only solution of the problem $ \Delta v=0, v|_{x^2+y^2=1}=\sin{\phi}+1=y+1 $ is the following:
$ v(x,y)=\frac{1-(x^2+y^2)}{2 \pi} \int_{x^2+y^2=1} \frac{(\xi_2+1)}{|x-\xi|^2} dS =\frac{1-(x^2+y^2)}{2 \pi} \int_{x^2+y^2=1} \frac{(\xi_2+1)}{(x- \xi_1)^2+ (y-\xi_2)^2} dS $
Is it right so far? Have I applied correctly the theorem? If so, can we compute the integral?
Let $v(x,y)$ be a harmonic function in $\mathbb{R}^2$. I want to compute $v(0,0)$ given that $v|_{x^2+y^2=1}=\sin{\phi}+1$, where $x= \cos{\phi}, y=\sin{\phi}, \phi \in [0,2 \pi)$.
I I thought that we could use the following theorem.
$(\star) \Delta u=0 \text{ in } B_R(0), u|_{\partial{B_R(0)}}=\phi $
($ B_R(0)$ is a sphere with radius $R$) Theorem: Let $ \phi \in C^0(\partial{B_R}(0))$ , then the function $ u(x)=\frac{R^2-|x|^2}{w_n R} \int_{\partial{B_R}} \frac{\phi(\xi)}{|x-\xi|^n} dS $ is the only (classical) solution of $(\star)$.
($ w_n $ is the area of the unit ball in $ \mathbb{R}^n $)
From the theorem we have that the only solution of the problem $ \Delta v=0, v|_{x^2+y^2=1}=\sin{\phi}+1=y+1 $ is the following:
$ v(x,y)=\frac{1-(x^2+y^2)}{2 \pi} \int_{x^2+y^2=1} \frac{(\xi_2+1)}{|x-\xi|^2} dS =\frac{1-(x^2+y^2)}{2 \pi} \int_{x^2+y^2=1} \frac{(\xi_2+1)}{(x- \xi_1)^2+ (y-\xi_2)^2} dS $
Is it right so far? Have I applied correctly the theorem? If so, can we compute the integral?