It is asking you to compute the matrix product $$\begin{pmatrix}-1&-2&0&1\\0&3&1&1\\2&0&2&-4\\0&-1&0&0\end{pmatrix}\begin{pmatrix}r\\s\\t\\u\end{pmatrix}$$
#3
Leanna
8
0
Can you see if answer to first question is (-r, 3s, 2t, u)?
Or is it
Idk how to use latex but it's one matrix
(-r -2s+u)
(3s+t+u)
(2r+2t-4u)
(. -s. )
#4
MarkFL
Gold Member
MHB
13,284
12
Leanna said:
Can you see if answer to first question is (-r, 3s, 2t, u)?
Or is it
Idk how to use latex but it's one matrix
(-r -2s+u)
(3s+t+u)
(2r+2t-4u)
(. -s. )
Are there known conditions under which a Markov Chain is also a Martingale? I know only that the only Random Walk that is a Martingale is the symmetric one, i.e., p= 1-p =1/2.
Hello !
I derived equations of stress tensor 2D transformation.
Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture.
I want to obtain expression that connects tensor for case 1 and tensor for case 2.
My attempt:
Are these equations correct? Is there more easier expression for stress tensor...