- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- This is a question set by myself;
Find the general solution of
##-4u_x+6u_y+10u=e^{x+2y}##
- Relevant Equations
- Method of characteristic.
My take;
##ξ=-4x+6y## and ##η=6x+4y##
it follows that,
##52u_ξ +10u=e^{x+2y}##
for the homogenous part; we shall have the general solution;
$$u_h=e^{\frac{-5}{26} ξ} f{η }$$
now we note that
$$e^{x+2y}=e^{\frac{8ξ+η}{26}}$$
that is from solving the simultaneous equation;
##ξ=-4x+6y## and ##η=6x+4y## where ##x=\dfrac{12ξ-18η}{156}## and ##y=\dfrac{3ξ+2η}{26}##
for the inhomogenous part, we shall have;
$$u_p = e^{\frac{-5}{26}ξ}\int \frac{e^{\frac{8ξ+η}{26}}⋅e^{\frac{5}{26}ξ}}{52} dξ$$$$u_p = \frac{e^{\frac{13ξ+η}{26}}⋅e^{\frac{-5}{26}ξ}}{26} $$
$$u(ξ,η)=u_h+u_p=e^{\frac{-5}{26} ξ} \left[ f(η)+\frac{e^{\frac{13ξ+η}{26}}}{26}\right]$$
$$u(x,y)=
e^{\frac{-5}{26} (-4x+6y)} \left[ f(6x+4y)+\frac{1}{26} {e^{\frac{-46x+82y}{26}}}\right]$$your insight is welcome or alternative approach to this problem.
##ξ=-4x+6y## and ##η=6x+4y##
it follows that,
##52u_ξ +10u=e^{x+2y}##
for the homogenous part; we shall have the general solution;
$$u_h=e^{\frac{-5}{26} ξ} f{η }$$
now we note that
$$e^{x+2y}=e^{\frac{8ξ+η}{26}}$$
that is from solving the simultaneous equation;
##ξ=-4x+6y## and ##η=6x+4y## where ##x=\dfrac{12ξ-18η}{156}## and ##y=\dfrac{3ξ+2η}{26}##
for the inhomogenous part, we shall have;
$$u_p = e^{\frac{-5}{26}ξ}\int \frac{e^{\frac{8ξ+η}{26}}⋅e^{\frac{5}{26}ξ}}{52} dξ$$$$u_p = \frac{e^{\frac{13ξ+η}{26}}⋅e^{\frac{-5}{26}ξ}}{26} $$
$$u(ξ,η)=u_h+u_p=e^{\frac{-5}{26} ξ} \left[ f(η)+\frac{e^{\frac{13ξ+η}{26}}}{26}\right]$$
$$u(x,y)=
e^{\frac{-5}{26} (-4x+6y)} \left[ f(6x+4y)+\frac{1}{26} {e^{\frac{-46x+82y}{26}}}\right]$$your insight is welcome or alternative approach to this problem.
Last edited: