- #1
chwala
Gold Member
- 2,756
- 390
- Homework Statement
- The volume of a cylinder is given by the formula ##V=πr^2h##. Find the greatest and least values of ##V## if ##r+h=6##
- Relevant Equations
- rate of change- differentiation
$$V=πr^2h$$
$$V=πr^2(6-r)$$
$$\frac {dV}{dr}=12πr-3πr^2$$
For max/min value, $$\frac {dV}{dr}=0$$
$$12πr-3πr^2=0$$
$$3πr(4-r)=0$$
##r=0## or ##r=4##
$$⇒V_{max}= 32π$$
$$⇒V_{min}= 0$$,
I do not think there is another way of doing this...
$$V=πr^2(6-r)$$
$$\frac {dV}{dr}=12πr-3πr^2$$
For max/min value, $$\frac {dV}{dr}=0$$
$$12πr-3πr^2=0$$
$$3πr(4-r)=0$$
##r=0## or ##r=4##
$$⇒V_{max}= 32π$$
$$⇒V_{min}= 0$$,
I do not think there is another way of doing this...
Last edited: