- #1
Math100
- 802
- 222
- Homework Statement
- Find the highest power of ## 3 ## dividing ## 823! ##.
- Relevant Equations
- None.
Let ## n ## be a positive integer and ## p ## be a prime.
Then the exponent of the highest power of ## p ## that divides ## n! ## is ## \sum_{k=1}^{\infty}[\frac{n}{p^{k}}] ##.
Observe that ## n=823 ## and ## p=3 ##.
Thus
\begin{align*}
&[\frac{823}{3}]+[\frac{823}{3^{2}}]+[\frac{823}{3^{3}}]+[\frac{823}{3^{4}}]+[\frac{823}{3^{5}}]+[\frac{823}{3^{6}}]\\
&=274+91+30+10+3+1\\
&=409.\\
\end{align*}
Therefore, the highest power of ## 3 ## dividing ## 823! ## is ## 409 ##.
Then the exponent of the highest power of ## p ## that divides ## n! ## is ## \sum_{k=1}^{\infty}[\frac{n}{p^{k}}] ##.
Observe that ## n=823 ## and ## p=3 ##.
Thus
\begin{align*}
&[\frac{823}{3}]+[\frac{823}{3^{2}}]+[\frac{823}{3^{3}}]+[\frac{823}{3^{4}}]+[\frac{823}{3^{5}}]+[\frac{823}{3^{6}}]\\
&=274+91+30+10+3+1\\
&=409.\\
\end{align*}
Therefore, the highest power of ## 3 ## dividing ## 823! ## is ## 409 ##.