- #1
InaudibleTree
- 9
- 0
Homework Statement
[itex]\int1/(1+\sqrt{2x})\,dx[/itex]
Homework Equations
[itex]u=1+\sqrt{2x} \Rightarrow \sqrt{2x}=u-1[/itex]
[itex]du=1/\sqrt{2x}dx \Rightarrow \sqrt{2x}du=dx[/itex]
The Attempt at a Solution
[itex]\int1/(1+\sqrt{2x})\,dx = \int\sqrt{2x}/(1+\sqrt{2x})\,du = \int(u-1)/u\,du = \int\,du-\int1/u\,du = u-ln|u|+C = 1+\sqrt{2x}-ln|1+\sqrt{2x}|+C[/itex]
The book I am using has the answer as:
[itex]\sqrt{2x}-ln|1+\sqrt{2x}|+C[/itex]
Where am i going wrong?
Last edited: