- #1
Reshma
- 749
- 6
1] A square loop of wire, with sides of length 'a' lies in the first quadrant of the xy-plane, with one corner at the origin. In this region there is a non-uniform time-dependent magnetic field [itex]\vec B (y,t) = ky^3t^2\hat z[/itex]. Find the induced emf in the loop.I applied the flux rule here.
[tex]\varepsilon = -{d\Phi \over dt} = -{d(\vec B \cdot \vec A) \over dt} = {d(Ba^2) \over dt} = -a^2\left({d(ky^3t^2)\over dt}\right)[/tex]
Am I going right here?
2] A perfectly conducting spherical shell of radius 'a' rotates about the z-axis with angular velocity [itex]\omega[/itex] in a uniform magnetic field [itex]\vec B = B_0\hat z[/itex]. Calculate the emf developed between the "north pole" and the equator.
I evaluted the flux here:
[tex]\Phi = \vec B \cdot \vec A = B_0\left(4\pi a^2\right)[/tex]
But the answer given here is: [tex]{1\over 2}B_0\omega a^2[/tex]
How do I incorporate [itex]\omega[/itex] in my flux?
[tex]\varepsilon = -{d\Phi \over dt} = -{d(\vec B \cdot \vec A) \over dt} = {d(Ba^2) \over dt} = -a^2\left({d(ky^3t^2)\over dt}\right)[/tex]
Am I going right here?
2] A perfectly conducting spherical shell of radius 'a' rotates about the z-axis with angular velocity [itex]\omega[/itex] in a uniform magnetic field [itex]\vec B = B_0\hat z[/itex]. Calculate the emf developed between the "north pole" and the equator.
I evaluted the flux here:
[tex]\Phi = \vec B \cdot \vec A = B_0\left(4\pi a^2\right)[/tex]
But the answer given here is: [tex]{1\over 2}B_0\omega a^2[/tex]
How do I incorporate [itex]\omega[/itex] in my flux?
Last edited: