Find the inequality that satisfies this quadratic problem

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached...
Relevant Equations
quadratic equations...
see the textbook problem below;

1634785415928.png
see my working to solution below;

1634785465755.png

i generally examine the neighbourhood of the critical values in trying to determine the correct inequality. My question is
"is there a different approach other than checking the neighbourhood of the critical values"? In other words, i am seeking an alternative approach.

cheers guys...
 
Physics news on Phys.org
I got the same result, but I used the same method. The quadratic equation for ##k## is ##k^2-7k+12<0##. This is a parabola, opened at the top, so all values between the two zeros have to be negative, and the zeros are ##7/2\pm \sqrt{1/4}.##

What other method do you mean? Without the parabola in mind, we can write
$$
k^2-7k+12=(k-4)\cdot(k-3) < 0
$$
In order for a product to be negative, the two factors must be of different signs. So we have the options ##k-4>0## and ##k-3<0## which is impossible, or ##k-4<0## and ##k-3>0## which is the solution.
 
I meant another approach...cheers Fresh :cool: :cool:...cheers mate, i find it much easier just to examine the neighbourhood of the critical values ##k## and i check whether they satisfy the given inequality...this is similar to your analysis that you have shown on your last paragraph. Cheers.
 
chwala said:
I meant another approach...cheers Fresh :cool: :cool:...cheers mate, i find it much easier just to examine the neighbourhood...its pretty straightforward.
Yes. Once you know the zeros of the equation you are done, one way or the other. I scribbled the parabola and "saw" that we are looking for the in-betweens. I only added the consideration with the factors as an additional way to get the result.

The direct investigation of the straights ##y=k(4x-3)## is a bit difficult because ##k## changes slope and the point where the straight crosses a coordinate axis simultaneously. I see no way to get a hold of this line bundle. Calculating the intersection points is easier.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top