Find the initial velocity ##U##

AI Thread Summary
The discussion focuses on determining the initial velocity of a stone thrown upwards and the relevance of displacement versus total distance traveled. It emphasizes that in kinematic equations, displacement is the key variable, not the total distance. A calculation is presented showing that the time of flight for a stone thrown with an initial velocity of 3 m/s is 0.6 seconds, derived from the equation of motion. The example illustrates that total distance does not affect the calculation of time or initial velocity. The conversation concludes with encouragement for self-study in Mechanics.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached.
Relevant Equations
Mechanics
Now in determining the initial velocity;

in my understanding, if ##s=1.8## then we consider the stone's motion from the top to the ground. Why not consider ##s=3.6##, the total distance traveled by stone from start point ##t=0##? Is it possible to model equations from this point?

The stone when thrown upwards will reach a point where it is instantaneously at rest and then start the descent. In that case, it is clear that ##s=1.8##. I need insight on this very part.

1711750389691.png



1711750420378.png
 
Last edited:
Physics news on Phys.org
chwala said:
Why not consider ##s=3.6##, the total distance traveled by stone from point ##t=0##?
Because in the kinematic equations the relevant variable is the displacement (a vector) not the distance (a scalar).
 
  • Like
Likes chwala and MatinSAR
Thank @kuruman I am self-studying Mechanics. Noted.
 
chwala said:
Thank @kuruman I am self-studying Mechanics. Noted.
Then I will add here a calculation that illustrates the point in post #2.

Problem
A stone is thrown straight up in the air with initial velocity ##v_0=3~##m/s and returns to the point at which it was launched. Find the time time of flight ##T##.

Solution
The height of the stone ##y## at any time ##t## above the point of launch is given by $$y=v_0~t-\frac{1}{2}g~t^2.$$ At the specific time ##t=T## when it returns to the launch point, the height of the stone above ground is zero. With ##t=T## the equation we have $$ 0=v_0~T-\frac{1}{2}g~T^2\implies T(v_0 -\frac{1}{2}g~T)=0.$$ One or the other of the terms in the product on the right must be zero.

A. ##T=0## which says that the stone is at zero height when it is launched, a fact that we already knew and built in the equation. We reject this solution because we are looking for a time after launch, i.e. ##T>0.##

B. ##v_0 -\frac{1}{2}g~T=0 \implies T=\dfrac{2v_0}{g}.## This is the solution that we want.

Answer
##T=\dfrac{2\times 3~(\text{m/s})}{10~(\text{m/s}^2)}=0.6~\text{s}.##

You can see from this example that the total distance traveled up and down does not enter the picture and is not needed. Good luck with your self-study. We are here to help.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top