- #1
Math100
- 797
- 221
- Homework Statement
- Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
- Relevant Equations
- None.
Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.