Find the local maxima and minima for##f(x,y) = x^3-xy-x+xy^3-y^4##

In summary, to find the local maxima and minima of the function \( f(x,y) = x^3 - xy - x + xy^3 - y^4 \), we first compute the critical points by taking the partial derivatives \( f_x \) and \( f_y \), setting them equal to zero, and solving the resulting equations. This involves finding \( f_x = 3x^2 - y - 1 + y^3 = 0 \) and \( f_y = -x + 3xy^2 - 4y^3 = 0 \). After locating the critical points, we apply the second derivative test using the Hessian determinant to classify each critical point as a local maximum, local minimum,
  • #1
chwala
Gold Member
2,773
396
Homework Statement
see attached.
Relevant Equations
##\nabla f = 0##
1701685037726.png


Ok i have,

##f_x= 3x^2-y-1+y^3##

##f_y = -x+3xy^2-4y^3##

##f_{xx} = 6x##

##f_{yy} = 6xy - 12y^2##

##f_{xy} = -1+3y^2##

looks like one needs software to solve this?

I can see the solutions from wolframalpha: local maxima to two decimal places as;

##(x,y) = (-0.67, 0.43)##

...but i am more interested in steps that lead to the given solution...
 
Last edited:
Physics news on Phys.org
  • #2
chwala said:
looks like one needs software to solve this?

Indeed. See
https://www.wolframalpha.com/input?i=3x^2+y^3-y=1+AND+4y^3=x(3y^2-1)

chwala said:
I can see the solutions from wolframalpha: local maxima to two decimal places as;

##(x,y) = (-0.67, 0.43)##

...but i am more interested in steps that lead to the given solution...

Look at the plot. This gives you an idea of how a numerical algorithm could work. Walk along the blue line until you cross the orange line and determine whether it is a local minimum, a local maximum, or an inflection point.
 
  • Like
Likes chwala
  • #4
fresh_42 said:
Indeed. See
https://www.wolframalpha.com/input?i=3x^2+y^3-y=1+AND+4y^3=x(3y^2-1)
Look at the plot. This gives you an idea of how a numerical algorithm could work. Walk along the blue line until you cross the orange line and determine whether it is a local minimum, a local maximum, or an inflection point.
Thanks from the plot we have the point ##(-7.540, -5.595)## being an inflection point or can we say saddle point? then ##(0.471, -0.396)## being the local minimum... bringing me to the next question, do we have a global maximum and global minimum for this problem?
 
  • #5
chwala said:
Thanks from the plot we have the point ##(-7.540, -5.595)## being an inflection point or can we say saddle point?
Yes.
chwala said:
then ##(0.471, -0.396)## being the local minimum... bringing me to the next question, do we have a global maximum and global minimum for this problem?
Look at the links in @anuttarasammyak 's post #3.
 
  • Like
Likes chwala
Back
Top