- #1
Ackbach
Gold Member
MHB
- 4,155
- 92
Here is this week's POTW:
-----
Four distinct lines $L_1, \, L_2,\,L_3,\,L_4$ are given in the plane, with $L_1$ and $L_2$ respectively parallel to $L_3$ and $L_4$. Find the locus of a point moving so that the sum of its perpendicular distances from the four lines is constant.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Four distinct lines $L_1, \, L_2,\,L_3,\,L_4$ are given in the plane, with $L_1$ and $L_2$ respectively parallel to $L_3$ and $L_4$. Find the locus of a point moving so that the sum of its perpendicular distances from the four lines is constant.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!