MHB Find the maximal number of subsets, k.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Subsets
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $A_1, A_2, … , A_k$ be distinct subsets of $\left \{ 1,2,...,2018 \right \}$,

such that for each $1 \leq i < j \leq k$ the intersection $A_i \cap A_j$ forms an arithmetic progression.

Find the maximal value of $k$.
 
Mathematics news on Phys.org
Here´s the suggested solution:

The answer is: $\binom{2018}{0}+\binom{2018}{1}+\binom{2018}{2}+\binom{2018}{3}.$
It can be readily seen, that the collection of all subsets having at most $3$ elements satisfies the conditions.

In order to complete the solution, we show, that the number of subsets having at least $3$ elements is not greater than $\binom{2018}{3}$.
Consider any subset $A = \left \{a_1,a_2,…,a_n \right \}$ having at least $3$ elements and let $a_1<a_2<…<a_n$. We assign a label $L(A) = (a_1, a_2,c)$ to each such subset, where

if $A$ is an arithmetic progression then $c = a_n.$

if not then $c$ is the first element breaking arithmetic progression $(a_1,a_2,…)$.

For example if $A = \left \{3,6,9,12,19,29 \right \}$ then $L(A) = \left \{ 3,6,19 \right \}.$

Now note, that different $3$ or more element sets have different labels, and therefore there are at most $\binom{2018}{3}$. Done.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top