- #1
sabbagh80
- 38
- 0
Hi,
What is the maximum value of the given summation in terms of [itex]k, l[/itex] and [itex]N[/itex] ?
[tex]max_{0\leq x \leq k} \sum_{(l_1,l_2)\in A} \frac{N!}{(N-l_1-l_2)!l_1!l_2!} x^{l_1}(k-x)^{l_2}(1-k)^{N-l_1-l_2}[/tex]
where [itex]A=\{(l_1,l_2)|l_1,l_2 \in \{0,1,2,...,N\} [/itex] and [itex]l_1+2l_2=l\}[/itex] and [itex]0<k<1[/itex].
Thanks a lot for your participation.
What is the maximum value of the given summation in terms of [itex]k, l[/itex] and [itex]N[/itex] ?
[tex]max_{0\leq x \leq k} \sum_{(l_1,l_2)\in A} \frac{N!}{(N-l_1-l_2)!l_1!l_2!} x^{l_1}(k-x)^{l_2}(1-k)^{N-l_1-l_2}[/tex]
where [itex]A=\{(l_1,l_2)|l_1,l_2 \in \{0,1,2,...,N\} [/itex] and [itex]l_1+2l_2=l\}[/itex] and [itex]0<k<1[/itex].
Thanks a lot for your participation.
Last edited: