- #1
ArcanaNoir
- 779
- 4
Homework Statement
Find the MGF (Moment generating function) of the
a. geometric distribution
b. negative binomial distribution
Homework Equations
geometric distribution: [tex] f(x)=p^x(1-p)^{x-1} [/tex] where x=1,2,3...
negative binomial distribution: [tex] f(x)= \frac{(x-1)!}{(x-r)!(r-1)!}p^r(1-p)^{x-r} [/tex] where x=r, r+1, r+2...
MGF= [tex] E(e^{tx}) [/tex]
The Attempt at a Solution
a. [tex] \sum_{x=1}^{\infty}e^{tx}p^x(1-p)^{x-1} [/tex]
let [itex] q=1-p [/itex]
[tex] \sum_{x=1}^{\infty}e^{tx}p^xq^{x-1} [/tex]
[tex] \sum_{x=0}^{\infty}(pe^t)q^x [/tex]
[tex] =\frac{pe^t}{1-q} [/tex]
that's as close as I can get to approximating the solution,
but the book says the answer is [tex] \frac{pe^t}{1-qe^t} [/tex]
b. [tex] \sum_{x=r}^{\infty}\frac{(x-1)!}{(x-r)!(r-1)!}e^{tx}p^rq^{x-r} [/tex] where q=1-p