- #1
lfdahl
Gold Member
MHB
- 749
- 0
Find the minimum of the expression:
$$a^4+b^4+c^4-3abc$$
- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.
Hint:
$$a^4+b^4+c^4-3abc$$
- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.
Hint:
First prove the two auxiliary inequalities:
1. $bc \le \frac{a^2}{4}.$
2. $b^4+c^4 \ge \frac{a^4}{8}.$
1. $bc \le \frac{a^2}{4}.$
2. $b^4+c^4 \ge \frac{a^4}{8}.$