MHB Find the minimum a^4+b^4+c^4−3abc

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Minimum
AI Thread Summary
The discussion focuses on finding the minimum value of the expression a^4 + b^4 + c^4 - 3abc under the constraints that a is greater than or equal to 1 and the sum of a, b, and c equals zero. Participants share hints and solutions, emphasizing the importance of the given conditions in simplifying the problem. One user expresses gratitude for a well-explained solution, highlighting the collaborative nature of the discussion. The mathematical exploration aims to derive a minimum value through analytical methods. Overall, the thread showcases a problem-solving approach to a specific algebraic expression within defined parameters.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the minimum of the expression:

$$a^4+b^4+c^4-3abc$$

- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.

Hint:
First prove the two auxiliary inequalities:

1. $bc \le \frac{a^2}{4}.$

2. $b^4+c^4 \ge \frac{a^4}{8}.$
 
Mathematics news on Phys.org
lfdahl said:
Find the minimum of the expression:

$$a^4+b^4+c^4-3abc=A$$

- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.

Hint:
First prove the two auxiliary inequalities:

1. $bc \le \frac{a^2}{4}---(1)$

2. $b^4+c^4 \ge \frac{a^4}{8}---(2)$
my solution(using hint):
proof of (1):
$2bc=(b+c)^2-(b^2+c^2)\leq a^2-2bc$
so $4bc\leq a^2$
proof of (2):
$b^4+c^4=(b^2+c^2)^2-2b^2c^2=((b+c)^2-2bc)^2-2b^2c^2$
$=(a^2-2bc)^2-2b^2c^2\geq\dfrac {2a^4-a^4}{8}=\dfrac{a^4}{8}$
$A\geq a^4+\dfrac {a^4}{8}-3abc\geq \dfrac {9a^4}{8}-\dfrac {3a^3}{4}$
$\geq \dfrac{3a^4}{8}\geq\dfrac{3}{8}$
with ($a=1,b=c=\dfrac{-1}{2}$)
 
Last edited:
Albert said:
my solution(using hint):
proof of (1):
$2bc=(b+c)^2-(b^2+c^2)\leq a^2-2bc$
so $4bc\leq a^2$
proof of (2):
$b^4+c^4=(b^2+c^2)^2-2b^2c^2=((b+c)^2-2bc)^2-2b^2c^2$
$=(a^2-2bc)^2-2b^2c^2\geq\dfrac {2a^4-a^4}{8}=\dfrac{a^4}{8}$
$A\geq a^4+\dfrac {a^4}{8}-3abc\geq \dfrac {9a^4}{8}-\dfrac {3a^3}{4}$
$\geq \dfrac{3a^4}{8}\geq\dfrac{3}{8}$
with ($a=1,b=c=\dfrac{-1}{2}$)

Thankyou, Albert! - for your nice solution. Well done!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top