- #1
Math100
- 797
- 221
- Homework Statement
- Working modulo ## 9 ## or ## 11 ##, find the missing digits in the calculations below:
## 51840\cdot 273581=1418243\chi 040 ##.
- Relevant Equations
- None.
First, consider modulo ## 9 ##.
Then ## 9\mid (5+1+8+4+0)\implies 9\mid 18\implies 9\mid 51840 ##.
Since ## 51840\cdot 273581=1418243\chi 040 ##, it follows that ## 9\mid 1418243\chi 040 ##.
This means ## 9\mid (1+4+1+8+2+4+3+\chi+0+4+0)\implies 9\mid (27+\chi)\implies 9\mid\chi ##.
Thus ## \chi=0 ## or ## \chi=9 ##.
Next, consider modulo ## 11 ##.
Then ## 11\mid (1-8+5-3+7-2)\implies 11\mid 0\implies 11\mid 273581 ##.
Since ## 51840\cdot 273581=1418243\chi 040 ##, it follows that ## 11\mid 1418243\chi 040 ##.
This means ## 11\mid (0-4+0-\chi+3-4+2-8+1-4+1)\implies 11\mid (-13-\chi)\implies 11\mid (13+\chi) ##.
Thus ## \chi=9 ##.
Therefore, ## \chi=9 ##.
Then ## 9\mid (5+1+8+4+0)\implies 9\mid 18\implies 9\mid 51840 ##.
Since ## 51840\cdot 273581=1418243\chi 040 ##, it follows that ## 9\mid 1418243\chi 040 ##.
This means ## 9\mid (1+4+1+8+2+4+3+\chi+0+4+0)\implies 9\mid (27+\chi)\implies 9\mid\chi ##.
Thus ## \chi=0 ## or ## \chi=9 ##.
Next, consider modulo ## 11 ##.
Then ## 11\mid (1-8+5-3+7-2)\implies 11\mid 0\implies 11\mid 273581 ##.
Since ## 51840\cdot 273581=1418243\chi 040 ##, it follows that ## 11\mid 1418243\chi 040 ##.
This means ## 11\mid (0-4+0-\chi+3-4+2-8+1-4+1)\implies 11\mid (-13-\chi)\implies 11\mid (13+\chi) ##.
Thus ## \chi=9 ##.
Therefore, ## \chi=9 ##.
Last edited: