- #1
Math100
- 802
- 221
- Homework Statement
- An old and some what illegible invoice shows that ## 72 ## canned hams were purchased for ## $x67.9y ##. Find the missing digits.
- Relevant Equations
- None.
Consider the missing digits in ## x679y ##.
Then ## 72\mid x679y ##.
Note that ## 72=8\cdot 9 ##.
This means ## 8\mid x679y ## and ## 9\mid x679y ##.
Now we have
\begin{align*}
&x679y\equiv 0\pmod {9}\\
&\implies (x+6+7+9+y)\equiv 0\pmod {9}\\
&\implies (x+y+22)\equiv 0\pmod {9}\\
&\implies (x+y+4)\equiv 0\pmod {9}.\\
\end{align*}
Thus ## x679y=x\cdot 10^{4}+6\cdot 10^{3}+7\cdot 10^{2}+9\cdot 10+y ##.
Observe that ## x679y\equiv 0\pmod {8}\implies x679y\equiv (4+2+y)\pmod {8}\implies (6+y)\equiv 0\pmod {8} ##
because ## 10^{3}\equiv 0\pmod {8} ## and ## 10^{4}\equiv 0\pmod {8} ##.
Since ## (6+y)\equiv 0\pmod {8}\implies y=2 ##, it follows that ## (x+6)\equiv 0\pmod {9}\implies x=3 ##.
Therefore, the missing digits are ## x=3 ## and ## y=2 ##.
Then ## 72\mid x679y ##.
Note that ## 72=8\cdot 9 ##.
This means ## 8\mid x679y ## and ## 9\mid x679y ##.
Now we have
\begin{align*}
&x679y\equiv 0\pmod {9}\\
&\implies (x+6+7+9+y)\equiv 0\pmod {9}\\
&\implies (x+y+22)\equiv 0\pmod {9}\\
&\implies (x+y+4)\equiv 0\pmod {9}.\\
\end{align*}
Thus ## x679y=x\cdot 10^{4}+6\cdot 10^{3}+7\cdot 10^{2}+9\cdot 10+y ##.
Observe that ## x679y\equiv 0\pmod {8}\implies x679y\equiv (4+2+y)\pmod {8}\implies (6+y)\equiv 0\pmod {8} ##
because ## 10^{3}\equiv 0\pmod {8} ## and ## 10^{4}\equiv 0\pmod {8} ##.
Since ## (6+y)\equiv 0\pmod {8}\implies y=2 ##, it follows that ## (x+6)\equiv 0\pmod {9}\implies x=3 ##.
Therefore, the missing digits are ## x=3 ## and ## y=2 ##.