Find the modulus and argument of ##\dfrac{z_1}{z_2}##

In summary, the conversation discusses the process of multiplying complex numbers using the conjugate of the denominator. The final result can be expressed using the exponential form of a complex number, with a modulus of 2/3 and an argument of π/2.
  • #1
chwala
Gold Member
2,753
388
Homework Statement
See attached
Relevant Equations
Complex numbers
π
1682351380704.png


My take; i multiplied by the conjugate of the denominator...

$$\dfrac{z_1}{z_2}=\dfrac{2(\cos\dfrac{π}{3}+i \sin \dfrac{π}{3})}{3(\cos\dfrac{π}{6}+i \sin \dfrac{π}{6})}⋅\dfrac{3(\cos\dfrac{π}{6}-i \sin \dfrac{π}{6})}{3(\cos\dfrac{π}{6}-i \sin \dfrac{π}{6})}=\dfrac{2(\cos\dfrac{π}{3}+i \sin \dfrac{π}{3})}{3}⋅\dfrac{3(\cos\dfrac{π}{6}-i \sin \dfrac{π}{6})}{3}$$

...This will also realise the required result;though with some work by making use of,

##\cos a⋅\cos b-i\cos a⋅\sin b + i\sin a⋅cos b + \sin a⋅\sin b##

##=\cos a⋅\cos b+\sin a⋅\sin b-i\cos a⋅\sin b+i\sin a⋅\cos b##

##=\cos(a-b)-i\sin (a-b)##

for our case, and considering the argument part of the working we shall have,

##=\cos\left[\dfrac{π}{3}- - \dfrac{π}{6}\right]-i(\sin \left[\dfrac{π}{3}- - \dfrac{π}{6}\right]= \cos\left[\dfrac{π}{3}+\dfrac{π}{6}\right]-i(\sin \left[\dfrac{π}{3}+\dfrac{π}{6}\right]##

##=\cos\left[\dfrac{π}{2}\right]-i\sin \left[\dfrac{π}{2}\right]##
 
Last edited:
Physics news on Phys.org
  • #2
Use [tex]\cos \theta + i\sin \theta = e^{i\theta}.[/tex]
 
  • Like
Likes chwala
  • #3
pasmith said:
Use [tex]\cos \theta + i\sin \theta = e^{i\theta}.[/tex]
Fine, let me check on this again...
 
  • #4
##\dfrac{z_1}{z_2}=\dfrac{2}{3}e^{i\left[\dfrac{π}{3}+\dfrac{π}{6}\right]}=\dfrac{2}{3}e^{i\left[\dfrac{π}{2}\right]}##

Therefore

Modulus =##\dfrac{2}{3}##

and

Argument= ##\dfrac{π}{2}##
 
Last edited:

FAQ: Find the modulus and argument of ##\dfrac{z_1}{z_2}##

What is the modulus of a complex number?

The modulus of a complex number \( z = a + bi \) is given by \( |z| = \sqrt{a^2 + b^2} \). It represents the distance of the complex number from the origin in the complex plane.

How do you find the modulus of the quotient of two complex numbers?

To find the modulus of the quotient of two complex numbers \( \frac{z_1}{z_2} \), you divide the modulus of the numerator by the modulus of the denominator. If \( z_1 = a + bi \) and \( z_2 = c + di \), then \( \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \).

What is the argument of a complex number?

The argument of a complex number \( z = a + bi \) is the angle \( \theta \) that the line representing the complex number makes with the positive real axis in the complex plane. It is usually given in radians and can be calculated using \( \theta = \tan^{-1} \left( \frac{b}{a} \right) \).

How do you find the argument of the quotient of two complex numbers?

To find the argument of the quotient of two complex numbers \( \frac{z_1}{z_2} \), you subtract the argument of the denominator from the argument of the numerator. If \( \arg(z_1) = \theta_1 \) and \( \arg(z_2) = \theta_2 \), then \( \arg \left( \frac{z_1}{z_2} \right) = \theta_1 - \theta_2 \).

Can you provide an example of finding the modulus and argument of \( \dfrac{z_1}{z_2} \)?

Sure! Let \( z_1 = 3 + 4i \) and \( z_2 = 1 + 2i \). First, find the moduli: \( |z_1| = \sqrt{3^2 + 4^2} = 5 \) and \( |z_2| = \sqrt{1^2 + 2^2} = \sqrt{5} \). The modulus of \( \frac{z_1}{z_2} \) is \( \frac{5}{\sqrt{5}} = \sqrt{5} \). Next, find the arguments: \( \arg(z_1) = \tan^{-1}

Back
Top