- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- See attached- The question is set by me.
- Relevant Equations
- Complex Numbers
In my lines i have,
##(4-2i)^2 = (4-2i)(4-2i)##
##r^2 = 4^2 + (-2)^2 = 20##
##r \cos θ = 4## and ##r\sin θ = -2##
##\tan θ =-\dfrac{1}{2}##
##⇒θ = 5.82## radians.
Therefore,
##|(4-2i)^2| = \sqrt{20} ×\sqrt{20} = 20##
Argument = ##5.82 + 5.82 = 11.64##.
also ##|2|## = ##2## and argument = ##0##.
Therefore,
##\left|\dfrac{2}{(4-2i)^2}\right| = \dfrac{2}{20}=\dfrac{1}{10}##
Argument of ##\dfrac{2}{(4-2i)^2}=0 -11.64 = -11.64## radians.
Insight welcome.
##(4-2i)^2 = (4-2i)(4-2i)##
##r^2 = 4^2 + (-2)^2 = 20##
##r \cos θ = 4## and ##r\sin θ = -2##
##\tan θ =-\dfrac{1}{2}##
##⇒θ = 5.82## radians.
Therefore,
##|(4-2i)^2| = \sqrt{20} ×\sqrt{20} = 20##
Argument = ##5.82 + 5.82 = 11.64##.
also ##|2|## = ##2## and argument = ##0##.
Therefore,
##\left|\dfrac{2}{(4-2i)^2}\right| = \dfrac{2}{20}=\dfrac{1}{10}##
Argument of ##\dfrac{2}{(4-2i)^2}=0 -11.64 = -11.64## radians.
Insight welcome.