- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.11.1.15-T}$
$\textsf{Find the nth-order Taylor polynomials
centered at 0, for $n=0, 1, 2.$}$ \\
$$\displaystyle f(x)=cos(3x)$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k$$
$\textsf{n=0}\\$
$$P_0\left(x\right)\approx\frac{1}{0!}x^{0}\approx 1$$
$\textsf{n=1}\\$
$$P_1\left(x\right)\approx \frac{1}{0!}x^{0}+\frac{0}{1!}x^{1}= 1+0 = 1$$
$\textsf{n=2}\\$
$$P_2\displaystyle\left(x\right)\approx\frac{1}{0!}x^{0}+\frac{0}{1!}x^{1}+\frac{-9}{2!}x^{2}f\left(x\right)\approx 1- \frac{9}{2}x^{2}$$
$\textsf{first time to try this so kinda ?}$
$\textsf{Find the nth-order Taylor polynomials
centered at 0, for $n=0, 1, 2.$}$ \\
$$\displaystyle f(x)=cos(3x)$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k$$
$\textsf{n=0}\\$
$$P_0\left(x\right)\approx\frac{1}{0!}x^{0}\approx 1$$
$\textsf{n=1}\\$
$$P_1\left(x\right)\approx \frac{1}{0!}x^{0}+\frac{0}{1!}x^{1}= 1+0 = 1$$
$\textsf{n=2}\\$
$$P_2\displaystyle\left(x\right)\approx\frac{1}{0!}x^{0}+\frac{0}{1!}x^{1}+\frac{-9}{2!}x^{2}f\left(x\right)\approx 1- \frac{9}{2}x^{2}$$
$\textsf{first time to try this so kinda ?}$
Last edited: