- #1
BookWei
- 13
- 0
Homework Statement
I'm doing problems for practice in quantum physics.
Consider two particles of the mass m in one dimension with coordinates being denoted by x and they are
connected by a spring with spring constant k. Suppose that the total momentum of the system is p.
Find all possible total energies for the following cases :
(1)two particles are different (2)two particles are identical fermions.
2. The attempt at a solution
(1) I try to guess the answer...
Total energy is the sum of potential and kinetic energy. Now our particles have the same mass and they are one-dimensional. Moreover, they are non-identical. Now potential energy is based on spring constant K therefore V=1/2*K*x^2 . Now considering the harmonic oscillator in classic sense total energy E= T +V
Therefore E = P^2/2m + 1/2*mω^2*x^2.
considering energy from quantum mechanical point of view, we know P= -iℏ d/dx =p' and x=x' hamiltonian becomes, H= 1/2 p'^2/2m + 1/2*mω'^2*x^2
now considering the particles time independent
H'ψ(x) = Eψ(x)
the eigenvalues of this Hamiltonian is based on En = (n+ 1/2)ℏω where ground state has non-zero energy.
(2) I have no idea how to start this problem.
Thank you for your help.