- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Find possible values for ##a## and ##b## given that ##a,b εℤ##
##\dfrac{1}{a}+\dfrac{1}{b}= \dfrac{3}{2048}##
- Relevant Equations
- Numbers
I noted that,
##lcm(a,b)=2048##
Letting ##a=2^x## and ##b=2^y##,
##⇒\dfrac{1}{2^x}+\dfrac{1}{2^y}= \dfrac{3}{2^{11}}##
##⇒\dfrac{2^{11}}{2^x}+\dfrac{2^{11}}{2^y}= 3=[4-1]##
##⇒\dfrac{2^{11}}{2^x}+\dfrac{2^{11}}{2^y}=2^2-2^0##
My intention being to write all the numbers to base ##2##.
##2^{11-x} + 2^{11-y} = 2^2-2^0##
##2^{11-x}=2^2, x=9##
##2^{11-y}=-2^0##
##-[2^{11-y}] = 2^0##
##11-y=0, y=11##
Therefore,
##a=2^9=512, b=-2^{11}=-2048##
Your insight is welcome...just picked up this question from internet.
Wondering if there are other possible values for ##a## and ##b##...i need to check if there is a sequence of powers of ##2## for numerator part to make this a possibility.
##lcm(a,b)=2048##
Letting ##a=2^x## and ##b=2^y##,
##⇒\dfrac{1}{2^x}+\dfrac{1}{2^y}= \dfrac{3}{2^{11}}##
##⇒\dfrac{2^{11}}{2^x}+\dfrac{2^{11}}{2^y}= 3=[4-1]##
##⇒\dfrac{2^{11}}{2^x}+\dfrac{2^{11}}{2^y}=2^2-2^0##
My intention being to write all the numbers to base ##2##.
##2^{11-x} + 2^{11-y} = 2^2-2^0##
##2^{11-x}=2^2, x=9##
##2^{11-y}=-2^0##
##-[2^{11-y}] = 2^0##
##11-y=0, y=11##
Therefore,
##a=2^9=512, b=-2^{11}=-2048##
Your insight is welcome...just picked up this question from internet.
Wondering if there are other possible values for ##a## and ##b##...i need to check if there is a sequence of powers of ##2## for numerator part to make this a possibility.