- #1
RChristenk
- 64
- 9
- Homework Statement
- Find the ##r^{th}## term from the beginning and the ##r^{th}## term from the end of ##(a+2x)^n##.
- Relevant Equations
- Binomial-Theorem
##r^{th}## term counting from the beginning:
The coefficient of the ##r^{th}## term is ##r-1##
##^nC_{r-1}a^{n-(r-1)}(2x)^{r-1} = ^nC_{r-1}a^{n-r+1}(2x)^{r-1}##
This is the correct answer.
##r^{th}## term counting from the end:
There are a total of ##n+1## terms in ##(a+2x)^n##.
##(n+1-r)+1## is the ##r^{th}## term from the end being counted from the beginning.
The coefficient of the ##n-r+2## term is ##n-r+1##
##^nC_{n-r+1}a^{n-(n-r+1)}(2x)^{n-r+1} = ^nC_{n-r+1}a^{r-1}(2x)^{n-r+1}##
The answer is given as ##\dfrac{n(n-1)...(n-r+2)}{(r-1)!}a^{r-1}(2x)^{n-r+1}##
I'm not sure if ##^nC_{n-r+1}## in fraction form is correct:
##^nC_{n-r+1}=\dfrac{n!}{(n-r+1)!(n-(n-r+1))!}=\dfrac{n!}{(n-r+1)!(n+r-1)!}##
Or
##^nC_{n-r+1}=\dfrac{n(n-1)...(n-(n-r+1)+1)}{(n-r+1)!}=\dfrac{n(n-1)...(r+1)r}{(n-r+1)!}##
The coefficient of the ##r^{th}## term is ##r-1##
##^nC_{r-1}a^{n-(r-1)}(2x)^{r-1} = ^nC_{r-1}a^{n-r+1}(2x)^{r-1}##
This is the correct answer.
##r^{th}## term counting from the end:
There are a total of ##n+1## terms in ##(a+2x)^n##.
##(n+1-r)+1## is the ##r^{th}## term from the end being counted from the beginning.
The coefficient of the ##n-r+2## term is ##n-r+1##
##^nC_{n-r+1}a^{n-(n-r+1)}(2x)^{n-r+1} = ^nC_{n-r+1}a^{r-1}(2x)^{n-r+1}##
The answer is given as ##\dfrac{n(n-1)...(n-r+2)}{(r-1)!}a^{r-1}(2x)^{n-r+1}##
I'm not sure if ##^nC_{n-r+1}## in fraction form is correct:
##^nC_{n-r+1}=\dfrac{n!}{(n-r+1)!(n-(n-r+1))!}=\dfrac{n!}{(n-r+1)!(n+r-1)!}##
Or
##^nC_{n-r+1}=\dfrac{n(n-1)...(n-(n-r+1)+1)}{(n-r+1)!}=\dfrac{n(n-1)...(r+1)r}{(n-r+1)!}##
Last edited: