- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- ##x^2\sinh 2u +2x - \sinh 2u=0##
- Relevant Equations
- hyperbolic equations
Hmmmm was a nice one... took me some time to figure out ...seeking alternative ways ...
My working;
##x=\dfrac{-2±\sqrt{4+4 \sinh^2 2u}}{2 \sinh 2u}##
##x=\dfrac{-2±2\sqrt{1+ \sinh^2 2u}}{2 \sinh 2u}##
##x=\dfrac{-1±\sqrt{1+ \sinh^2 2u}}{\sinh 2u}##
##x=\dfrac{-1+\sqrt{1+ \sinh^2 2u}}{\sinh 2u}## or ##x=\dfrac{-1-\sqrt{1+ \sinh^2 2u}}{\sinh 2u}##
##x=\dfrac{-1+1+2\sinh^{2} u}{2\sinh u \cosh u}##
##x=\dfrac{2\sinh^{2} u}{2\sinh u \cosh u}##
##x=\dfrac{\sinh u}{\cosh u }##
My working;
##x=\dfrac{-2±\sqrt{4+4 \sinh^2 2u}}{2 \sinh 2u}##
##x=\dfrac{-2±2\sqrt{1+ \sinh^2 2u}}{2 \sinh 2u}##
##x=\dfrac{-1±\sqrt{1+ \sinh^2 2u}}{\sinh 2u}##
##x=\dfrac{-1+\sqrt{1+ \sinh^2 2u}}{\sinh 2u}## or ##x=\dfrac{-1-\sqrt{1+ \sinh^2 2u}}{\sinh 2u}##
##x=\dfrac{-1+1+2\sinh^{2} u}{2\sinh u \cosh u}##
##x=\dfrac{2\sinh^{2} u}{2\sinh u \cosh u}##
##x=\dfrac{\sinh u}{\cosh u }##