Find the shortest distance between the given vectors in 3D

AI Thread Summary
The discussion focuses on finding the shortest distance between given vectors in 3D, specifically using the formula |BA×BC|/|BC|. The vectors A, B, and C are defined as A=(6,-4,4), B=(2,1,2), and C=(3,-1,4). The calculations show that the shortest distance is 3, confirmed by alternative methods involving the vectors CA and CB. The user acknowledges the need for further study in this area and suggests that using directional vectors may provide a more robust approach. The thread highlights the importance of understanding vector operations in solving distance problems in three-dimensional space.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Find the shortest distance from ##(6,-4,4)## to the line joining ##(2,1,2)## and ##(3,-1,4)##
Relevant Equations
vectors in 3D
This is a textbook problem...the only solution given is ##3.##...with no working shown or given.

My working is below; i just researched for a method on google, i need to read more in this area...use of the directional vector may seem to be a more solid approach.

Ok i let ##A=(6,-4,4)##, ##B=(2,1,2)## and ##C=(3,-1,4)##
The shortest distance will be given by the formula;

##\dfrac {|BA×BC|}{|BC|}##
where
##BA=4i-5j+2k##
##BC=i-2j+2k##
therefore on substituting into the formula we shall have,
##\dfrac {|-6i-6j-3k|}{|i-2j+2k|}##= ##\dfrac {\sqrt{36+36+9}}{\sqrt {1+4+4}}=\dfrac{9}{3}=3##
 
Last edited:
Physics news on Phys.org
I just realized that also
##\dfrac {|CA×CB|}{|CB|}## works! and same result is found.
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Back
Top