- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Find the shortest distance from ##(6,-4,4)## to the line joining ##(2,1,2)## and ##(3,-1,4)##
- Relevant Equations
- vectors in 3D
This is a textbook problem...the only solution given is ##3.##...with no working shown or given.
My working is below; i just researched for a method on google, i need to read more in this area...use of the directional vector may seem to be a more solid approach.
Ok i let ##A=(6,-4,4)##, ##B=(2,1,2)## and ##C=(3,-1,4)##
The shortest distance will be given by the formula;
##\dfrac {|BA×BC|}{|BC|}##
where
##BA=4i-5j+2k##
##BC=i-2j+2k##
therefore on substituting into the formula we shall have,
##\dfrac {|-6i-6j-3k|}{|i-2j+2k|}##= ##\dfrac {\sqrt{36+36+9}}{\sqrt {1+4+4}}=\dfrac{9}{3}=3##
My working is below; i just researched for a method on google, i need to read more in this area...use of the directional vector may seem to be a more solid approach.
Ok i let ##A=(6,-4,4)##, ##B=(2,1,2)## and ##C=(3,-1,4)##
The shortest distance will be given by the formula;
##\dfrac {|BA×BC|}{|BC|}##
where
##BA=4i-5j+2k##
##BC=i-2j+2k##
therefore on substituting into the formula we shall have,
##\dfrac {|-6i-6j-3k|}{|i-2j+2k|}##= ##\dfrac {\sqrt{36+36+9}}{\sqrt {1+4+4}}=\dfrac{9}{3}=3##
Last edited: