Find The Smallest Natural Number

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Natural
In summary, the smallest natural number with 6 as the last digit, such that if the final 6 is moved to the front of the number it is multiplied by 4, is 153846. This can be solved using an alphametic method.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Find the smallest natural number with 6 as the last digit, such that if the final 6 is moved to the front of the number it is multiplied by 4.
 
Mathematics news on Phys.org
  • #2
Let's choose to let $x$ represent the string of $n$ digits to the left of 6 initially. Using the given information, we may state:

\(\displaystyle 4(10x+6)=6\cdot10^n+x\)

After some simplification, we obtain:

\(\displaystyle x=\frac{2\left(10^n-4 \right)}{13}\)

By trial and error, I find the smallest value for $n$ which gives an integral value for $x$ is:

$n=5$

and thus:

$x=15384$

which means the original number is $153846$. And we find:

\(\displaystyle \frac{615384}{153846}=4\)
 
  • #3
Bravo, MarkFL!

You deserve a round of applause for this solution!(Clapping):cool:
 
  • #4
Hello, anemone!

This can be solved as an alphametic.


Find the smallest natural number ending with 6,
such that if the final 6 is moved to the front of the number ,
it is multiplied by 4.

Suppose the number has the form:- [tex]\text{. . . }A\,B\,C\,D\,E\,6[/tex]

[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}[/tex][tex]\text{In column-6, }E = 4[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}[/tex][tex]\text{In column-5, }D = 8[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}[/tex][tex]\text{In column-4, }C = 3[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}[/tex][tex]\text{In column-3, }B = 5[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}[/tex][tex]\text{In column-2, }A = 1[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}[/tex]

[tex]\text{ta-}DAA![/tex]
 
  • #5
soroban said:
Hello, anemone!

This can be solved as an alphametic.



Suppose the number has the form:- [tex]\text{. . . }A\,B\,C\,D\,E\,6[/tex]

[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}[/tex][tex]\text{In column-6, }E = 4[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}[/tex][tex]\text{In column-5, }D = 8[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}[/tex][tex]\text{In column-4, }C = 3[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}[/tex][tex]\text{In column-3, }B = 5[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}[/tex][tex]\text{In column-2, }A = 1[/tex]
[tex]\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}[/tex]

[tex]\text{ta-}DAA![/tex]

Hi soroban,:) thank you for showing us another great method to solve this problem and you too deserve a pat on the back!:cool:(Clapping)
 

FAQ: Find The Smallest Natural Number

What is the definition of a natural number?

A natural number is a positive integer that is used for counting or ordering objects. It is a whole number that is greater than zero.

How do you find the smallest natural number?

The smallest natural number is 1. This is because it is the first positive integer and there are no smaller numbers that are also natural numbers.

Can the smallest natural number be negative?

No, the smallest natural number cannot be negative. Natural numbers are always positive integers and do not include negative numbers.

Is the smallest natural number the same as the number zero?

No, the smallest natural number is not the same as zero. Zero is considered to be a whole number, but it is not included in the set of natural numbers.

What is the difference between the smallest natural number and the smallest whole number?

The smallest natural number is 1, while the smallest whole number is 0. Natural numbers are positive integers, while whole numbers can include zero as well as positive and negative integers.

Similar threads

Replies
1
Views
1K
Replies
3
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
3
Views
1K
Replies
7
Views
1K
Replies
1
Views
2K
Replies
6
Views
3K
Back
Top