MHB Find The Smallest Natural Number

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Natural
AI Thread Summary
The smallest natural number ending with 6, which when the 6 is moved to the front is multiplied by 4, is 153846. The solution involves an alphametic approach where the digits are determined through a series of calculations. The last digit E is found to be 4, followed by D as 8, C as 3, B as 5, and A as 1. This leads to the final number being structured as 153846. The discussion highlights the collaborative effort in solving the problem and acknowledges contributions from various participants.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the smallest natural number with 6 as the last digit, such that if the final 6 is moved to the front of the number it is multiplied by 4.
 
Mathematics news on Phys.org
Let's choose to let $x$ represent the string of $n$ digits to the left of 6 initially. Using the given information, we may state:

$$4(10x+6)=6\cdot10^n+x$$

After some simplification, we obtain:

$$x=\frac{2\left(10^n-4 \right)}{13}$$

By trial and error, I find the smallest value for $n$ which gives an integral value for $x$ is:

$n=5$

and thus:

$x=15384$

which means the original number is $153846$. And we find:

$$\frac{615384}{153846}=4$$
 
Bravo, MarkFL!

You deserve a round of applause for this solution!(Clapping):cool:
 
Hello, anemone!

This can be solved as an alphametic.

Find the smallest natural number ending with 6,
such that if the final 6 is moved to the front of the number ,
it is multiplied by 4.
Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6

\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}

\text{ta-}DAA!
 
soroban said:
Hello, anemone!

This can be solved as an alphametic.


Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6

\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}

\text{ta-}DAA!

Hi soroban,:) thank you for showing us another great method to solve this problem and you too deserve a pat on the back!:cool:(Clapping)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top