- #1
youngstudent16
- 59
- 1
Homework Statement
For a positive integer ##n##, let
##a_n=\frac{1}{n} \sqrt[3]{n^{3}+n^{2}-n-1}##
Find the smallest positive integer ##k \geq2## such that ##a_2a_3\cdots a_k>4##
Homework Equations
The restrictions are the only relevant thing I can think of
The Attempt at a Solution
I have just tried plugging in numbers so far
When ##n=2## I got ##\frac{3^{\frac{2}{3}}}{2}##
When ##n=3## I got ##\frac{2 \times 2^{\frac{2}{3}}}{3}##
When ##n=4## I got ##\frac{1}{4} 3^{\frac{1}{3}} \hspace{1mm} 5^{\frac{2}{3}}##
Now this is growing really slowly so this is obviously not the correct approach.