Find the units digit of ## 3^{100} ## by the use of Fermat's theorem

Math100
Messages
816
Reaction score
229
Homework Statement
Find the units digit of ## 3^{100} ## by the use of Fermat's theorem.
Relevant Equations
None.
Consider modulo ## 10 ##.
Then ## 10=5\cdot 2 ##.
Applying the Fermat's theorem produces: ## 3^{4}\equiv 1\pmod {5} ##.
This means ## (3^{4})^{25}=3^{100}\equiv 1\pmod {5} ##.
Observe that ## 3\equiv 1\pmod {2}\implies 3^{100}\equiv 1\pmod {2} ##.
Now we have ## 5\mid (3^{100}-1) ## and ## 2\mid (3^{100}-1) ##.
Thus ## (5\cdot 2)\mid (3^{100}-1)\implies 3^{100}\equiv 1\pmod {10} ##.
Therefore, the units digit of ## 3^{100} ## is ## 1 ##.
 
Physics news on Phys.org
Well written!
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Back
Top