MHB Find the Value of $12x^4-2x^3-25x^2+9x+2017$ with $x=\dfrac {\sqrt 5 +1}{4}$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Value
Albert1
Messages
1,221
Reaction score
0
$x=\dfrac {\sqrt 5 +1}{4}$

please find the value of $12x^4-2x^3-25x^2+9x+2017$
 
Mathematics news on Phys.org
My solution:

We're given $x=\dfrac {\sqrt 5 +1}{4}$, and this gives us $x^2=\dfrac {2x +1}{4}\rightarrow4x^2-2x=1$ $\therefore 12x^2-6x=3,\,\,4x+\dfrac{8}{x}=2,\,\,20x^2-10x=5$

We're asked to evaluate $12x^4-2x^3-25x^2+9x+2017$:

First, we let

$12x^4-2x^3-25x^2+9x=k$

Manipulating the equation above algebraically, we see that

$12x^2-2x-25+\dfrac{9}{x}=\dfrac{k}{x^2}$

$(12x^2-6x)+\left(4x+\dfrac{8}{x}\right)+\dfrac{1}{x}-25=\dfrac{k}{x^2}$

$3+2+\dfrac{1}{x}-25=\dfrac{k}{x^2}$

$k=-(20x^2-10x)=-5$

$\therefore 12x^4-2x^3-25x^2+9x+2017=k+2017=-5+2017=2012$
 
we have $4x-1 = \sqrt(5)$

squaring and reordering we get
$16x^2-8x -4-0$
or $4x^2-2x-1 = 0 \cdots (1)$

now deviding $12x^4-2x^3-25x^2+ 9x + 2017$ by $(4x^2-2x-1)$ we find that

$12x^4-2x^3-25x^2+9x+2017=(4x^2-2x-1)(3x^2+x+5) + 2012= 2012$
 
A somewhat tedious but perhaps mildly interesting solution:

$$x=\frac{\sqrt5+1}{4}=\frac12\varphi$$ where $$\varphi$$ is the golden ratio.

Identity: $$\varphi^2=\varphi+1$$

$$12x^4-2x^3-25x^2+9x+2017$$

$$=12\left[\frac14(\varphi+1)\right]^2-\frac14(\varphi^2+\varphi)-25\left[\frac14(\varphi+1)\right]+\frac92\varphi+2017$$

$$=\frac34(3\varphi+2)-\frac14(2\varphi+1)-\frac{25}{4}(\varphi+1)+\frac92\varphi+2017$$

$$=\frac94\varphi+\frac32-\frac12\varphi-\frac14-\frac{25}{4}\varphi-\frac{25}{4}+\frac92\varphi+2017$$

$$=2012$$
 
greg1313 :
yes, very good and very interesting solution !
mine is the same as kaliprasad's solution
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
2K
Replies
7
Views
3K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
1
Views
973
Back
Top