- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- If ##2log_8N=p##, ##log_2 (2N)=q##, ##q-p=4## then find ##N##
- Relevant Equations
- Logs
My approach is as follows;
$$\log_8 N= \frac {1}{2} p$$
$$\log_2 (2N)=q$$
$$→8^{\scriptstyle\frac 1 2} = N$$
$$ 2^q=2N$$
$$2^{\scriptstyle\frac 3 2} =N$$
$$2^q= 2N$$
then from 1 and 2, it follows that,
$$2^{q-1.5p} =2,$$ on solving the simultaneous equation;
$$q-1.5p=1, q-p=4$$, we get ##q=10## and ##p=6##
##2^{10}=2N##
##N=512##
any other ways...cheers guys
$$\log_8 N= \frac {1}{2} p$$
$$\log_2 (2N)=q$$
$$→8^{\scriptstyle\frac 1 2} = N$$
$$ 2^q=2N$$
$$2^{\scriptstyle\frac 3 2} =N$$
$$2^q= 2N$$
then from 1 and 2, it follows that,
$$2^{q-1.5p} =2,$$ on solving the simultaneous equation;
$$q-1.5p=1, q-p=4$$, we get ##q=10## and ##p=6##
##2^{10}=2N##
##N=512##
any other ways...cheers guys
Last edited: