Find the value of (x+y+z)/(l+m+k)

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Value
In summary, we are given 6 real numbers $x, y, z, l, m, k$ that satisfy $x^2+y^2+z^2=25$, $l^2+m^2+k^2=36$, and $xl+ym+zk=30$. To find the value of $\dfrac{x+y+z}{l+m+k}$, we can use the Cauchy-Schwarz inequality to get $\dfrac{x+y+z}{l+m+k}\leq \sqrt{\dfrac{x^2+y^2+z^2}{l^2+m^2+k^2}}=\sqrt{\dfrac{25}{36}}=\dfrac{5}{6}$. Therefore
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
$x,\,y,\,z,\,l,\,m,\,k$ are real numbers such that

$x^2+y^2+z^2=25$,

$l^2+m^2+k^2=36$, and

$xl+ym+zk=30$.

Evaluate $\dfrac{x+y+z}{l+m+k}$.
 
Mathematics news on Phys.org
  • #2
ineedhelpnow said:
Take the square root of each equation.

X+Y+Z=5

L+M+K=6

$\frac{X+Y+Z}{L+M+K}= 5/6$

$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ and not $x^2+y^2+z^2$
 
  • #3
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p
 
  • #4
ineedhelpnow said:
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p

No one told you that they are integers
 
  • #5
kaliprasad said:
No one told you that they are integers

I don't know what else to try. Someone else can have a go at it :eek:
 
  • #6
ineedhelpnow said:
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p

Hi ineedhelpnow!

I applaud you for taking a stab at this challenge, but kaliprasad is right; we are not told that the 6 variables are integers. The good news is, your end result $\dfrac{5}{6}$ is correct, so, in an effort to encourage more members to participate in my challenges, I will give you 50% for the correct answer, hehehe...:P
 
  • #7
We have two spheres centered at the origin. If \(\displaystyle x,y,z\) and \(\displaystyle l,m,k\) are treated as the components of
two collinear vectors the equation \(\displaystyle xl+ym+zk=30\) always holds:

\(\displaystyle <x,y,z>\cdot<l,m,k>\,=5\cdot6\cos(0)=30\)

and so

\(\displaystyle \frac{x+y+z}{l+m+k}=\frac{|<x,y,z>|}{|<l,m,k>|}=\frac56\)

as required.
 
Last edited:
  • #8
greg1313 said:
We have two spheres centered at the origin. If \(\displaystyle x,y,z\) and \(\displaystyle l,k,m\) are treated as the components of
two collinear vectors the equation \(\displaystyle xl+ym+zk=30\) always holds:

\(\displaystyle <x,y,z>\cdot<l,m,k>\,=5\cdot6\cos(0)=30\)

and so

\(\displaystyle \frac{x+y+z}{l+m+k}=\frac{|<x,y,z>|}{|<l,m,k>|}=\frac56\)

as required.

Bravo, greg1313! Thanks for participating! :cool:
 
  • #9
Another method of other to solve for this challenge:

$x^2+y^2+z^2=25$ gives us $\left(\dfrac{x}{5}\right)^2+\left(\dfrac{y}{5}\right)^2+\left(\dfrac{z}{5}\right)^2=1$,

$l^2+m^2+k^2=36$ gives us $\left(\dfrac{l}{6}\right)^2+\left(\dfrac{m}{6}\right)^2+\left(\dfrac{k}{6}\right)^2=1$ and

$\dfrac{xl}{30}+\dfrac{ym}{30}+\dfrac{zk}{30}=1$

So $\left(\dfrac{x}{5}\right)^2+\left(\dfrac{y}{5}\right)^2+\left(\dfrac{z}{5}\right)^2-2\left(\dfrac{xl}{30}+\dfrac{ym}{30}+\dfrac{zk}{30}\right)+\left(\dfrac{l}{6}\right)^2+\left(\dfrac{m}{6}\right)^2+\left(\dfrac{k}{6}\right)^2=1-2+1=0$

This implies $\left(\dfrac{x}{5}-\dfrac{l}{6}\right)^2+\left(\dfrac{y}{5}-\dfrac{m}{6}\right)^2+\left(\dfrac{z}{5}-\dfrac{k}{6}\right)^2=0$

$\therefore \dfrac{x}{5}-\dfrac{l}{6}=0,\,\,\dfrac{y}{5}-\dfrac{m}{6}=0,\,\,\dfrac{z}{5}-\dfrac{k}{6}=0$

thus we have $x=\dfrac{5l}{6}$, $y=\dfrac{5m}{6}$ and $z=\dfrac{5k}{6}$

Hence,

$\dfrac{x+y+z}{l+m+k}=\dfrac{\dfrac{5l}{6}+\dfrac{5m}{6}+\dfrac{5k}{6}}{l+m+k}=\dfrac{5}{6}$
 
Last edited:

FAQ: Find the value of (x+y+z)/(l+m+k)

What is the purpose of finding the value of (x+y+z)/(l+m+k)?

The purpose of finding the value of (x+y+z)/(l+m+k) is to solve an algebraic expression involving multiple variables. This can help in understanding the relationship between the variables and finding the specific numerical value of the expression.

What are the steps involved in finding the value of (x+y+z)/(l+m+k)?

The steps involved in finding the value of (x+y+z)/(l+m+k) include simplifying the expression, substituting the given values for the variables, and performing the necessary mathematical operations to arrive at the final answer.

Can the value of (x+y+z)/(l+m+k) be negative?

Yes, the value of (x+y+z)/(l+m+k) can be negative if the given values for the variables result in a negative answer after performing the mathematical operations. It is important to pay attention to the signs of the variables and their corresponding values when solving the expression.

What if one or more variables in (x+y+z)/(l+m+k) have no given value?

If one or more variables in (x+y+z)/(l+m+k) have no given value, the expression cannot be solved and the value cannot be determined. In this case, the expression remains as it is and cannot be simplified further.

Can the value of (x+y+z)/(l+m+k) be undefined?

Yes, the value of (x+y+z)/(l+m+k) can be undefined if any of the denominators (l, m, or k) are equal to zero. This is because division by zero is undefined in mathematics. Therefore, it is important to check for the possibility of a denominator being zero before solving the expression.

Similar threads

Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
10
Views
172
Back
Top