- #1
songoku
- 2,368
- 349
- Homework Statement
- Please see below
- Relevant Equations
- not sure
I don't think I understand what the question is asking. Find ##a## and ##b## so that the maximum takes the minimum values?
If ##a## and ##b## are real numbers, the maximum values of ##3a^2+2b## and ##3b^2+2a## are infinity. How can infinity take minimum value?
I have calculated the values of ##3a^2+2b## and ##3b^2+2a## for each given option:
Option (A): ##3a^2+2b=-\frac{1}{9}## and ##3b^2+2a=-\frac{14}{27}##
Option (B): ##3a^2+2b=-\frac{14}{27}## and ##3b^2+2a=-\frac{1}{9}##
Option (C): ##3a^2+2b=-\frac{8}{27}## and ##3b^2+2a=-\frac{8}{27}##
Option (D): ##3a^2+2b=-\frac{1}{3}## and ##3b^2+2a=-\frac{1}{3}##
Option (E): ##3a^2+2b=-\frac{1}{3}## and ##3b^2+2a=1##
What do this values tell me and how should I actually interpret the question?
Thanks